Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An Androsterone‐H2@C60 hybrid: Synthesis, Properties and Molecular Docking Simulations with SARS‐Cov‐2

An Androsterone‐H2@C60 hybrid: Synthesis, Properties and Molecular Docking Simulations with... We report the synthesis and characterization of a fullerene‐steroid hybrid that contains H2@C60 and a dehydroepiandrosterone moiety synthesized by a cyclopropanation reaction with 76 % yield. Theoretical calculations at the DFT‐D3(BJ)/PBE 6‐311G(d,p) level predict the most stable conformation and that the saturation of a double bond is the main factor causing the upfield shielding of the signal appearing at −3.13 ppm, which corresponds to the H2 located inside the fullerene cage. Relevant stereoelectronic parameters were also investigated and reinforce the idea that electronic interactions must be considered to develop studies on chemical‐biological interactions. A molecular docking simulation predicted that the binding energy values for the protease‐hybrid complexes were −9.9 kcal/mol and −13.5 kcal/mol for PLpro and 3CLpro respectively, indicating the potential use of the synthesized steroid‐H2@C60 as anti‐SARS‐Cov‐2 agent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ChemPlusChem Wiley

Loading next page...
 
/lp/wiley/an-androsterone-h2-c60-hybrid-synthesis-properties-and-molecular-sYZoialO2j

References (50)

Publisher
Wiley
Copyright
© 2021 Wiley‐VCH GmbH
eISSN
2192-6506
DOI
10.1002/cplu.202000770
Publisher site
See Article on Publisher Site

Abstract

We report the synthesis and characterization of a fullerene‐steroid hybrid that contains H2@C60 and a dehydroepiandrosterone moiety synthesized by a cyclopropanation reaction with 76 % yield. Theoretical calculations at the DFT‐D3(BJ)/PBE 6‐311G(d,p) level predict the most stable conformation and that the saturation of a double bond is the main factor causing the upfield shielding of the signal appearing at −3.13 ppm, which corresponds to the H2 located inside the fullerene cage. Relevant stereoelectronic parameters were also investigated and reinforce the idea that electronic interactions must be considered to develop studies on chemical‐biological interactions. A molecular docking simulation predicted that the binding energy values for the protease‐hybrid complexes were −9.9 kcal/mol and −13.5 kcal/mol for PLpro and 3CLpro respectively, indicating the potential use of the synthesized steroid‐H2@C60 as anti‐SARS‐Cov‐2 agent.

Journal

ChemPlusChemWiley

Published: Jul 1, 2021

Keywords: ; ; ; ;

There are no references for this article.