Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

All‐Oxide MoOx/SnOx Charge Recombination Interconnects for Inverted Organic Tandem Solar Cells

All‐Oxide MoOx/SnOx Charge Recombination Interconnects for Inverted Organic Tandem Solar Cells Multijunction solar cells are designed to improve the overlap with the solar spectrum and to minimize losses due to thermalization. Aside from the optimum choice of photoactive materials for the respective sub‐cells, a proper interconnect is essential. This study demonstrates a novel all‐oxide interconnect based on the interface of the high‐work‐function (WF) metal oxide MoOx and low‐WF tin oxide (SnOx). In contrast to typical p‐/n‐type tunnel junctions, both the oxides are n‐type semiconductors with a WF of 5.2 and 4.2 eV, respectively. It is demonstrated that the electronic line‐up at the interface of MoOx and SnOx comprises a large intrinsic interface dipole (≈0.8 eV), which is key to afford ideal alignment of the conduction band of MoOx and SnOx, without the requirement of an additional metal or organic dipole layer. The presented MoOx/SnOx interconnect allows for the ideal (loss‐free) addition of the open circuit voltages of the two sub‐cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Loading next page...
 
/lp/wiley/all-oxide-moox-snox-charge-recombination-interconnects-for-inverted-d1Uj58RSXt

References (69)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201702533
Publisher site
See Article on Publisher Site

Abstract

Multijunction solar cells are designed to improve the overlap with the solar spectrum and to minimize losses due to thermalization. Aside from the optimum choice of photoactive materials for the respective sub‐cells, a proper interconnect is essential. This study demonstrates a novel all‐oxide interconnect based on the interface of the high‐work‐function (WF) metal oxide MoOx and low‐WF tin oxide (SnOx). In contrast to typical p‐/n‐type tunnel junctions, both the oxides are n‐type semiconductors with a WF of 5.2 and 4.2 eV, respectively. It is demonstrated that the electronic line‐up at the interface of MoOx and SnOx comprises a large intrinsic interface dipole (≈0.8 eV), which is key to afford ideal alignment of the conduction band of MoOx and SnOx, without the requirement of an additional metal or organic dipole layer. The presented MoOx/SnOx interconnect allows for the ideal (loss‐free) addition of the open circuit voltages of the two sub‐cells.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

There are no references for this article.