Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Advances in Ionic Thermoelectrics: From Materials to Devices

Advances in Ionic Thermoelectrics: From Materials to Devices As an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as a result have triggered intensive interest as a promising energy conversion technique to harvest and exploit low‐grade waste heat (<130 °C). The last decade has witnessed great progress in i‐TE materials and devices; however, there are ongoing disputes about the inherent fundamentals and working mechanisms of i‐TEs, and a comprehensive overview of this field is required urgently. In this review, the prominent i‐TE effects, which set the ground for i‐TE materials, or more precisely, thermo‐electrochemical systems, are first elaborated. Then, TE performance, capacitance capability, and mechanical properties of such system‐based i‐TE materials, followed by a critical discussion on how to manipulate these factors toward a higher figure‐of‐merit, are examined. After that, the prevalent molding methods for assembling i‐TE materials into applicable devices are summarized. To conclude, several evaluation criteria for i‐TE devices are proposed to quantitatively illustrate the promise of practical applications. It is therefore clarified that, if the recent trend of developing i‐TEs can continue, the waste heat recycling landscape will be significantly altered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Advances in Ionic Thermoelectrics: From Materials to Devices

Loading next page...
 
/lp/wiley/advances-in-ionic-thermoelectrics-from-materials-to-devices-J4xNuc2Xyy

References (301)

Publisher
Wiley
Copyright
© 2023 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202203692
Publisher site
See Article on Publisher Site

Abstract

As an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as a result have triggered intensive interest as a promising energy conversion technique to harvest and exploit low‐grade waste heat (<130 °C). The last decade has witnessed great progress in i‐TE materials and devices; however, there are ongoing disputes about the inherent fundamentals and working mechanisms of i‐TEs, and a comprehensive overview of this field is required urgently. In this review, the prominent i‐TE effects, which set the ground for i‐TE materials, or more precisely, thermo‐electrochemical systems, are first elaborated. Then, TE performance, capacitance capability, and mechanical properties of such system‐based i‐TE materials, followed by a critical discussion on how to manipulate these factors toward a higher figure‐of‐merit, are examined. After that, the prevalent molding methods for assembling i‐TE materials into applicable devices are summarized. To conclude, several evaluation criteria for i‐TE devices are proposed to quantitatively illustrate the promise of practical applications. It is therefore clarified that, if the recent trend of developing i‐TEs can continue, the waste heat recycling landscape will be significantly altered.

Journal

Advanced Energy MaterialsWiley

Published: Mar 1, 2023

Keywords: devices; ionic thermoelectrics; materials; thermo‐electrochemical

There are no references for this article.