Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Acidic Water Oxidation on Quantum Dots of IrOx/Graphdiyne

Acidic Water Oxidation on Quantum Dots of IrOx/Graphdiyne Efficient acidic water oxidation utilization in the oxygen evolution reaction (OER) is still an important bottleneck for hydrogen production. From fundamental principles, a controllable graphdiyne (GDY) induced growth strategy is established; highly uniform size distribution of oxidized iridium quantum dots is prepared on the surface of graphdiyne (IrOxQD/GDY). The result shows that, the catalyst exhibits excellent activity and durability for acidic OER, with a current density of 10 mA cm−2 at a small overpotential of 236 mV versus the reversible hydrogen electrode (RHE) and a Tafel slope of 70 mV dec−1. The performance is greatly superior to previously reported electrocatalysts. Remarkably, the acidic electrolyzer using IrOxQD/GDY as both cathode and anode electrodes can reach 10 mA cm−2 only at a much low cell voltage of 1.49 V (vs RHE). The results show the superior advantages of graphdiyne in effectively increasing numbers of the catalytically active sites for improving the charge transfer behavior and protecting the metal catalysts from corrosion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Acidic Water Oxidation on Quantum Dots of IrOx/Graphdiyne

Loading next page...
 
/lp/wiley/acidic-water-oxidation-on-quantum-dots-of-irox-graphdiyne-p3qAB7rw0V

References (46)

Publisher
Wiley
Copyright
© 2021 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202101138
Publisher site
See Article on Publisher Site

Abstract

Efficient acidic water oxidation utilization in the oxygen evolution reaction (OER) is still an important bottleneck for hydrogen production. From fundamental principles, a controllable graphdiyne (GDY) induced growth strategy is established; highly uniform size distribution of oxidized iridium quantum dots is prepared on the surface of graphdiyne (IrOxQD/GDY). The result shows that, the catalyst exhibits excellent activity and durability for acidic OER, with a current density of 10 mA cm−2 at a small overpotential of 236 mV versus the reversible hydrogen electrode (RHE) and a Tafel slope of 70 mV dec−1. The performance is greatly superior to previously reported electrocatalysts. Remarkably, the acidic electrolyzer using IrOxQD/GDY as both cathode and anode electrodes can reach 10 mA cm−2 only at a much low cell voltage of 1.49 V (vs RHE). The results show the superior advantages of graphdiyne in effectively increasing numbers of the catalytically active sites for improving the charge transfer behavior and protecting the metal catalysts from corrosion.

Journal

Advanced Energy MaterialsWiley

Published: Aug 1, 2021

Keywords: ; ; ; ;

There are no references for this article.