Access the full text.
Sign up today, get DeepDyve free for 14 days.
A strategy for developing a novel donor–π–acceptor conducting polymeric hole transport material (TTB–TTQ) based on thiophene and benzothiadiazole as an alternative to spiro‐MeOTAD is reported. The resulting polymer is highly soluble in many organic solvents and exhibits excellent film formability. The addition of lithium bis(trifluoromethanesulfonyl) imide salt and tert‐butylpyridine to TTB–TTQ results in a rough film surface with a fibril structure and improved charge transport. A perovskite solar cell with the highest power conversion efficiency (η) yet achieved in such cells, 14.1%, which is 22.6% greater than that of a device employing a spiro‐MeOTAD is demonstrated. This strategy provides a novel approach to developing solar cell materials for efficient perovskite solar cells.
Advanced Energy Materials – Wiley
Published: Jul 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.