Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Stable Graphitic, Nanocarbon‐Encapsulated, Cobalt‐Rich Core–Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer

A Stable Graphitic, Nanocarbon‐Encapsulated, Cobalt‐Rich Core–Shell Electrocatalyst as an Oxygen... The oxygen electrode plays a vital role in the successful commercialization of renewable energy technologies, such as fuel cells and water electrolyzers. In this study, the Prussian blue analogue‐derived nitrogen‐doped nanocarbon (NC) layer‐trapped, cobalt‐rich, core–shell nanostructured electrocatalysts (core–shell Co@NC) are reported. The electrode exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble electrodes. The core–shell Co@NC‐loaded nickel foam exhibits a lower overpotential of 330 mV than that of IrO2 on nickel foam at 10 mA cm−2 and has a durability of over 400 h. The commercial Pt/C cathode‐assisted, core–shell Co@NC–anode water electrolyzer delivers 10 mA cm−2 at a cell voltage of 1.59 V, which is 70 mV lower than that of the IrO2–anode water electrolyzer. Over the long‐term chronopotentiometry durability testing, the IrO2–anode water electrolyzer shows a cell voltage loss of 230 mV (14%) at 95 h, but the loss of the core–shell Co@NC–anode electrolyzer is only 60 mV (4%) even after 350 h cell‐operation. The findings indicate that the Prussian blue analogue is a class of inorganic nanoporous materials that can be used to derive metal‐rich, core–shell electrocatalysts with enriched active centers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

A Stable Graphitic, Nanocarbon‐Encapsulated, Cobalt‐Rich Core–Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer

Loading next page...
 
/lp/wiley/a-stable-graphitic-nanocarbon-encapsulated-cobalt-rich-core-shell-0kmrGZoM0p

References (74)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201702838
Publisher site
See Article on Publisher Site

Abstract

The oxygen electrode plays a vital role in the successful commercialization of renewable energy technologies, such as fuel cells and water electrolyzers. In this study, the Prussian blue analogue‐derived nitrogen‐doped nanocarbon (NC) layer‐trapped, cobalt‐rich, core–shell nanostructured electrocatalysts (core–shell Co@NC) are reported. The electrode exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble electrodes. The core–shell Co@NC‐loaded nickel foam exhibits a lower overpotential of 330 mV than that of IrO2 on nickel foam at 10 mA cm−2 and has a durability of over 400 h. The commercial Pt/C cathode‐assisted, core–shell Co@NC–anode water electrolyzer delivers 10 mA cm−2 at a cell voltage of 1.59 V, which is 70 mV lower than that of the IrO2–anode water electrolyzer. Over the long‐term chronopotentiometry durability testing, the IrO2–anode water electrolyzer shows a cell voltage loss of 230 mV (14%) at 95 h, but the loss of the core–shell Co@NC–anode electrolyzer is only 60 mV (4%) even after 350 h cell‐operation. The findings indicate that the Prussian blue analogue is a class of inorganic nanoporous materials that can be used to derive metal‐rich, core–shell electrocatalysts with enriched active centers.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

There are no references for this article.