Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Novel Anion Doping for Stable CsPbI2Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V

A Novel Anion Doping for Stable CsPbI2Br Perovskite Solar Cells with an Efficiency of 15.56% and... The Cs‐based inorganic perovskite solar cells (PSCs), such as CsPbI2Br, have made a striking breakthrough with power conversion efficiency (PCE) over 16% and potential to be used as top cells for tandem devices. Herein, I− is partially replaced with the acetate anion (Ac−) in the CsPbI2Br framework, producing multiple benefits. The Ac− doping can change the morphology, electronic properties, and band structure of the host CsPbI2Br film. The obtained CsPbI2−x Br(Ac)x perovskite films present lower trap densities, longer carrier lifetimes, and fast charge transportation compared to the host CsPbI2Br films. Interestingly, the CsPbI2−x Br(Ac)x PSCs exhibit a maximum PCE of 15.56% and an ultrahigh open circuit voltage (Voc) of 1.30 V without sacrificing photocurrent. Notably, such a remarkable Voc is among the highest values of the previously reported CsPbI2Br PSCs, while the PCE far exceeds all of them. In addition, the obtained CsPbI2−x Br(Ac)x PSCs exhibit high reproducibility and good stability. The stable CsPbI2−x Br(Ac)x PSCs with high Voc and PCE are desirable for tandem solar cell applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

A Novel Anion Doping for Stable CsPbI2Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V

Loading next page...
 
/lp/wiley/a-novel-anion-doping-for-stable-cspbi2br-perovskite-solar-cells-with-fJECsiuCTI

References (51)

Publisher
Wiley
Copyright
© 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201902279
Publisher site
See Article on Publisher Site

Abstract

The Cs‐based inorganic perovskite solar cells (PSCs), such as CsPbI2Br, have made a striking breakthrough with power conversion efficiency (PCE) over 16% and potential to be used as top cells for tandem devices. Herein, I− is partially replaced with the acetate anion (Ac−) in the CsPbI2Br framework, producing multiple benefits. The Ac− doping can change the morphology, electronic properties, and band structure of the host CsPbI2Br film. The obtained CsPbI2−x Br(Ac)x perovskite films present lower trap densities, longer carrier lifetimes, and fast charge transportation compared to the host CsPbI2Br films. Interestingly, the CsPbI2−x Br(Ac)x PSCs exhibit a maximum PCE of 15.56% and an ultrahigh open circuit voltage (Voc) of 1.30 V without sacrificing photocurrent. Notably, such a remarkable Voc is among the highest values of the previously reported CsPbI2Br PSCs, while the PCE far exceeds all of them. In addition, the obtained CsPbI2−x Br(Ac)x PSCs exhibit high reproducibility and good stability. The stable CsPbI2−x Br(Ac)x PSCs with high Voc and PCE are desirable for tandem solar cell applications.

Journal

Advanced Energy MaterialsWiley

Published: Oct 1, 2019

Keywords: ; ; ; ;

There are no references for this article.