Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Nonencapsulative Pendulum‐Like Paper–Based Hybrid Nanogenerator for Energy Harvesting

A Nonencapsulative Pendulum‐Like Paper–Based Hybrid Nanogenerator for Energy Harvesting The newly invented triboelectric nanogenerator (TENG) is deemed to be a more efficient strategy than an electromagnetic generator (EMG) in harvesting low‐frequency (<2 Hz) water wave energy. Various TENGs with different structures and functions for blue energy have been developed, which can be roughly divided into two types: liquid–solid contact electrification TENGs and fully enclosed solid–solid contact electrification TENGs. Robustness and packaging are critical factors in the development of TENGs toward practical applications. Furthermore, for fully enclosed TENGs, the requirements and costs of packaging are very high, and they can difficult to disassemble after enclosed, if there is something wrong with the devices. Herein, a nonencapsulative pendulum‐like paper based hybrid nanogenerator for energy harvesting is designed, which mainly consists of three parts, one solar panel, two paper based zigzag multilayered TENGs, and three EMG units. This unique structure reveals the superior robustness and a maximum peak power of zigzag multilayered TENGs up to 22.5 mW is realized. Moreover, the device can be used to collect the mechanical energy of human motion in hand shaking. This work presents a new platform of hybrid generators toward energy harvesting as a portable practical power source, which has potential applications in navigation and lighting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

A Nonencapsulative Pendulum‐Like Paper–Based Hybrid Nanogenerator for Energy Harvesting

Loading next page...
 
/lp/wiley/a-nonencapsulative-pendulum-like-paper-based-hybrid-nanogenerator-for-ueb0TGfLDk

References (36)

Publisher
Wiley
Copyright
© 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201901149
Publisher site
See Article on Publisher Site

Abstract

The newly invented triboelectric nanogenerator (TENG) is deemed to be a more efficient strategy than an electromagnetic generator (EMG) in harvesting low‐frequency (<2 Hz) water wave energy. Various TENGs with different structures and functions for blue energy have been developed, which can be roughly divided into two types: liquid–solid contact electrification TENGs and fully enclosed solid–solid contact electrification TENGs. Robustness and packaging are critical factors in the development of TENGs toward practical applications. Furthermore, for fully enclosed TENGs, the requirements and costs of packaging are very high, and they can difficult to disassemble after enclosed, if there is something wrong with the devices. Herein, a nonencapsulative pendulum‐like paper based hybrid nanogenerator for energy harvesting is designed, which mainly consists of three parts, one solar panel, two paper based zigzag multilayered TENGs, and three EMG units. This unique structure reveals the superior robustness and a maximum peak power of zigzag multilayered TENGs up to 22.5 mW is realized. Moreover, the device can be used to collect the mechanical energy of human motion in hand shaking. This work presents a new platform of hybrid generators toward energy harvesting as a portable practical power source, which has potential applications in navigation and lighting.

Journal

Advanced Energy MaterialsWiley

Published: Sep 1, 2019

Keywords: ; ;

There are no references for this article.