Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Facile Strategy for the Fabrication of Cell‐Laden Porous Alginate Hydrogels based on Two‐Phase Aqueous Emulsions

A Facile Strategy for the Fabrication of Cell‐Laden Porous Alginate Hydrogels based on Two‐Phase... Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

A Facile Strategy for the Fabrication of Cell‐Laden Porous Alginate Hydrogels based on Two‐Phase Aqueous Emulsions

Loading next page...
 
/lp/wiley/a-facile-strategy-for-the-fabrication-of-cell-laden-porous-alginate-W50zr5YbFZ

References (68)

Publisher
Wiley
Copyright
© 2023 Wiley‐VCH GmbH
ISSN
1616-301X
eISSN
1616-3028
DOI
10.1002/adfm.202214129
Publisher site
See Article on Publisher Site

Abstract

Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling.

Journal

Advanced Functional MaterialsWiley

Published: Aug 1, 2023

Keywords: adipose‐cancer interaction; core‐shell; porous hydrogels; spheroids; two‐phase aqueous emulsions

There are no references for this article.