Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

3D Printing of Transparent Silicone Elastomers

3D Printing of Transparent Silicone Elastomers In this paper, inks for transparent elastomers that are formulated by matching the refractive index of silica and polysiloxanes are described. The transparent inks transmit up to ≈90% of 700 nm light through 1 cm and remain transparent when solidified. The inks and solidified materials exhibit a thermochromic effect. This thermochromic effect can be controlled by the refractive index mismatch. Transparency may increase or decrease as temperature increases, depending on the refractive index mismatch of the base polysiloxane and silica. It is found that the rheological properties of the ink depend on the distribution of silica particles, which is dictated by silica functionality, weight content, and processing. Siloxane precursors that vary in chemical functionality are introduced to tailor the mechanical properties of the printed elastomers, which obtain stretchability >65% along with a tensile modulus of 1.9 MPa. After optimizing siloxane chemistry and ink processing, the authors are able to print transparent elastomers. Potential applications are demonstrated for printed structures by printing encapsulation structures for light‐emitting diodes, semitransparent dye‐filled structures, a microfluidic mixing device, and a multimaterial structure that exhibits temperature‐dependent camouflage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Technologies Wiley

Loading next page...
 
/lp/wiley/3d-printing-of-transparent-silicone-elastomers-WkFE0aWBeq

References (41)

Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
eISSN
2365-709X
DOI
10.1002/admt.202100974
Publisher site
See Article on Publisher Site

Abstract

In this paper, inks for transparent elastomers that are formulated by matching the refractive index of silica and polysiloxanes are described. The transparent inks transmit up to ≈90% of 700 nm light through 1 cm and remain transparent when solidified. The inks and solidified materials exhibit a thermochromic effect. This thermochromic effect can be controlled by the refractive index mismatch. Transparency may increase or decrease as temperature increases, depending on the refractive index mismatch of the base polysiloxane and silica. It is found that the rheological properties of the ink depend on the distribution of silica particles, which is dictated by silica functionality, weight content, and processing. Siloxane precursors that vary in chemical functionality are introduced to tailor the mechanical properties of the printed elastomers, which obtain stretchability >65% along with a tensile modulus of 1.9 MPa. After optimizing siloxane chemistry and ink processing, the authors are able to print transparent elastomers. Potential applications are demonstrated for printed structures by printing encapsulation structures for light‐emitting diodes, semitransparent dye‐filled structures, a microfluidic mixing device, and a multimaterial structure that exhibits temperature‐dependent camouflage.

Journal

Advanced Materials TechnologiesWiley

Published: May 1, 2022

Keywords: additive manufacturing; direct ink writing; siloxanes; transparent

There are no references for this article.