Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Time-dependent progression of neurogenic lower urinary tract dysfunction after spinal cord injury in the mouse model

Time-dependent progression of neurogenic lower urinary tract dysfunction after spinal cord injury... This study evaluated the time-course changes in bladder and external urinary sphincter (EUS) activity as well as the expression of mechanosensitive channels in lumbosacral dorsal root ganglia (DRG) after spinal cord injury (SCI). Female C57BL/6N mice in the SCI group underwent transection of the Th8/9 spinal cord. Spinal intact mice and SCI mice at 2, 4 and 6 weeks post SCI were evaluated by single-filling cystometry and EUS-electromyography (EMG). In another set of mice, the bladder and L6-S1 DRG were harvested for protein and mRNA analyses. In SCI mice, non-voiding contractions was confirmed at 2 weeks post-SCI, and did not increase over time to 6 weeks. In 2-weeks SCI mice, EUS-EMG measurements revealed detrusor-sphincter dyssynergia (DSD), but periodic EMG reductions during bladder contraction were hardly observed. At 4 weeks, SCI mice showed increases of EMG activity reduction time with increased voiding efficiency (VE). At 6 weeks, SCI mice exhibited a further increase in EMG reduction time. RT-PCR of L6-S1 DRG showed increased mRNA levels of TRPV1 and ASIC1-3 in SCI mice with a decrease of ASIC2-3 at 6 weeks compared to 4 weeks whereas Piezo2 showed a slow increase at 6 weeks. Protein assay showed the SCI-induced overexpression of bladder BDNF with a time-dependent decrease post SCI. These results indicate that detrusor overactivity is established in the early phase whereas DSD is completed later at 4 weeks with an improvement at 6 weeks post SCI, and that mechanosensitive channels may be involved in the time-dependent changes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Physiology-Renal Physiology The American Physiological Society

Time-dependent progression of neurogenic lower urinary tract dysfunction after spinal cord injury in the mouse model

Loading next page...
 
/lp/the-american-physiological-society/time-dependent-progression-of-neurogenic-lower-urinary-tract-mVzmllOCxB

References (27)

ISSN
1931-857x
eISSN
1522-1466
DOI
10.1152/ajprenal.00622.2020
Publisher site
See Article on Publisher Site

Abstract

This study evaluated the time-course changes in bladder and external urinary sphincter (EUS) activity as well as the expression of mechanosensitive channels in lumbosacral dorsal root ganglia (DRG) after spinal cord injury (SCI). Female C57BL/6N mice in the SCI group underwent transection of the Th8/9 spinal cord. Spinal intact mice and SCI mice at 2, 4 and 6 weeks post SCI were evaluated by single-filling cystometry and EUS-electromyography (EMG). In another set of mice, the bladder and L6-S1 DRG were harvested for protein and mRNA analyses. In SCI mice, non-voiding contractions was confirmed at 2 weeks post-SCI, and did not increase over time to 6 weeks. In 2-weeks SCI mice, EUS-EMG measurements revealed detrusor-sphincter dyssynergia (DSD), but periodic EMG reductions during bladder contraction were hardly observed. At 4 weeks, SCI mice showed increases of EMG activity reduction time with increased voiding efficiency (VE). At 6 weeks, SCI mice exhibited a further increase in EMG reduction time. RT-PCR of L6-S1 DRG showed increased mRNA levels of TRPV1 and ASIC1-3 in SCI mice with a decrease of ASIC2-3 at 6 weeks compared to 4 weeks whereas Piezo2 showed a slow increase at 6 weeks. Protein assay showed the SCI-induced overexpression of bladder BDNF with a time-dependent decrease post SCI. These results indicate that detrusor overactivity is established in the early phase whereas DSD is completed later at 4 weeks with an improvement at 6 weeks post SCI, and that mechanosensitive channels may be involved in the time-dependent changes.

Journal

American Journal of Physiology-Renal PhysiologyThe American Physiological Society

Published: Jul 1, 2021

There are no references for this article.