Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Removal of urea by electro-oxidation in a miniature dialysis device: a study in awake goats

Removal of urea by electro-oxidation in a miniature dialysis device: a study in awake goats The key to success in developing a wearable dialysis device is a technique to safely and efficiently regenerate and reuse a small volume of dialysate in a closed-loop system. In a hemodialysis model in goats, we explored whether urea removal by electro-oxidation (EO) could be effectively and safely applied in vivo. A miniature dialysis device was built, containing 1 or 2 “EO units,” each with 10 graphite electrodes, with a cumulative electrode surface of 585 cm2 per unit. The units also contained poly(styrene-divinylbenzene) sulfonate beads, FeOOH beads, and activated carbon for respective potassium, phosphate, and chlorine removal. Urea, potassium, and phosphate were infused to create “uremic” conditions. Urea removal was dependent on total electrode surface area [removal of 8 mmol/h (SD 1) and 16 mmol/h (SD 2) and clearance of 12 ml/min (SD 1) and 20 ml/min (SD 3) with 1 and 2 EO units, respectively] and plasma urea concentration but not on flow rate. Extrapolating urea removal with 2 EO units to 24 h would suffice to remove daily urea production, but for intermittent dialysis, additional units would be required. EO had practically no effects on potassium and phosphate removal or electrolyte balance. However, slight ammonium releasewas observed, and some chlorine release at higher dialysate flow rates. Minor effects on acid-base balance were observed, possibly partly due to infusion of chloride. Mild hemolysis occurred, which seemed related to urea infusion. In conclusion, clinically relevant urea removal was achieved in vivo by electro-oxidation. Efficacy and safety testing in a large-animal model with uremia is now indicated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Physiology-Renal Physiology The American Physiological Society

Loading next page...
 
/lp/the-american-physiological-society/removal-of-urea-by-electro-oxidation-in-a-miniature-dialysis-device-a-bO1yff2uAu

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1931-857x
eISSN
1522-1466
DOI
10.1152/ajprenal.00094.2018
Publisher site
See Article on Publisher Site

Abstract

The key to success in developing a wearable dialysis device is a technique to safely and efficiently regenerate and reuse a small volume of dialysate in a closed-loop system. In a hemodialysis model in goats, we explored whether urea removal by electro-oxidation (EO) could be effectively and safely applied in vivo. A miniature dialysis device was built, containing 1 or 2 “EO units,” each with 10 graphite electrodes, with a cumulative electrode surface of 585 cm2 per unit. The units also contained poly(styrene-divinylbenzene) sulfonate beads, FeOOH beads, and activated carbon for respective potassium, phosphate, and chlorine removal. Urea, potassium, and phosphate were infused to create “uremic” conditions. Urea removal was dependent on total electrode surface area [removal of 8 mmol/h (SD 1) and 16 mmol/h (SD 2) and clearance of 12 ml/min (SD 1) and 20 ml/min (SD 3) with 1 and 2 EO units, respectively] and plasma urea concentration but not on flow rate. Extrapolating urea removal with 2 EO units to 24 h would suffice to remove daily urea production, but for intermittent dialysis, additional units would be required. EO had practically no effects on potassium and phosphate removal or electrolyte balance. However, slight ammonium releasewas observed, and some chlorine release at higher dialysate flow rates. Minor effects on acid-base balance were observed, possibly partly due to infusion of chloride. Mild hemolysis occurred, which seemed related to urea infusion. In conclusion, clinically relevant urea removal was achieved in vivo by electro-oxidation. Efficacy and safety testing in a large-animal model with uremia is now indicated.

Journal

American Journal of Physiology-Renal PhysiologyThe American Physiological Society

Published: Nov 1, 2018

References