Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease

Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB... Inflammation is a major determinant for the progression of chronic kidney disease (CKD). NF-κB is a master transcription factor upregulated in CKD that promotes inflammation and regulates apoptosis and vascular remodeling. We aimed to modulate this pathway for CKD therapy in a swine model of CKD using a peptide inhibitor of the NF-κB p50 subunit (p50i) fused to a protein carrier [elastin-like polypeptide (ELP)] and equipped with a cell-penetrating peptide (SynB1). We hypothesized that intrarenal SynB1-ELP-p50i therapy would inhibit NF-κB-driven inflammation and induce renal recovery. CKD was induced in 14 pigs. After 6 wk, pigs received single intrarenal SynB1-ELP-p50i therapy (10 mg/kg) or placebo (n = 7 each). Renal hemodynamics were quantified in vivo using multidetector computed tomography before and 8 wk after treatment. Pigs were then euthanized. Ex vivo experiments were performed to quantify renal activation of NF-κB, expression of downstream mediators of NF-κB signaling, renal microvascular density, inflammation, and fibrosis. Fourteen weeks of CKD stimulated NF-κB signaling and downstream mediators (e.g., TNF-α, monocyte chemoattractant protein-1, and IL-6) accompanying loss of renal function, inflammation, fibrosis, and microvascular rarefaction versus controls. All of these were improved after SynB1-ELP-p50i therapy, accompanied by reduced circulating inflammatory cytokines as well, which were evident up to 8 wk after treatment. Current treatments for CKD are largely ineffective. Our study shows the feasibility of a new treatment to induce renal recovery by offsetting inflammation at a molecular level. It also supports the therapeutic potential of targeted inhibition of the NF-κB pathway using novel drug delivery technology in a translational model of CKD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Physiology-Renal Physiology The American Physiological Society

Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease

Loading next page...
 
/lp/the-american-physiological-society/molecular-targeting-of-renal-inflammation-using-drug-delivery-M8g2lc4k6U

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1931-857x
eISSN
1522-1466
DOI
10.1152/ajprenal.00155.2020
Publisher site
See Article on Publisher Site

Abstract

Inflammation is a major determinant for the progression of chronic kidney disease (CKD). NF-κB is a master transcription factor upregulated in CKD that promotes inflammation and regulates apoptosis and vascular remodeling. We aimed to modulate this pathway for CKD therapy in a swine model of CKD using a peptide inhibitor of the NF-κB p50 subunit (p50i) fused to a protein carrier [elastin-like polypeptide (ELP)] and equipped with a cell-penetrating peptide (SynB1). We hypothesized that intrarenal SynB1-ELP-p50i therapy would inhibit NF-κB-driven inflammation and induce renal recovery. CKD was induced in 14 pigs. After 6 wk, pigs received single intrarenal SynB1-ELP-p50i therapy (10 mg/kg) or placebo (n = 7 each). Renal hemodynamics were quantified in vivo using multidetector computed tomography before and 8 wk after treatment. Pigs were then euthanized. Ex vivo experiments were performed to quantify renal activation of NF-κB, expression of downstream mediators of NF-κB signaling, renal microvascular density, inflammation, and fibrosis. Fourteen weeks of CKD stimulated NF-κB signaling and downstream mediators (e.g., TNF-α, monocyte chemoattractant protein-1, and IL-6) accompanying loss of renal function, inflammation, fibrosis, and microvascular rarefaction versus controls. All of these were improved after SynB1-ELP-p50i therapy, accompanied by reduced circulating inflammatory cytokines as well, which were evident up to 8 wk after treatment. Current treatments for CKD are largely ineffective. Our study shows the feasibility of a new treatment to induce renal recovery by offsetting inflammation at a molecular level. It also supports the therapeutic potential of targeted inhibition of the NF-κB pathway using novel drug delivery technology in a translational model of CKD.

Journal

American Journal of Physiology-Renal PhysiologyThe American Physiological Society

Published: Jul 1, 2020

References