Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Micro-CT imaging and structural analysis of glomeruli in a model of Adriamycin-induced nephropathy

Micro-CT imaging and structural analysis of glomeruli in a model of Adriamycin-induced nephropathy Glomeruli number and size are important for determining the pathogenesis of glomerular disease, chronic kidney disease, and hypertension. Moreover, renal injury can occur in specific cortical layers and alter glomerular spatial distribution. In this study, we present a comprehensive structural analysis of glomeruli in a model of Adriamycin (doxorubicin) nephropathy. Glomeruli are imaged (micro-CT at 10 × 10 × 10 μm3) in kidney specimens from C57Bl/6 mouse cohorts: control treated with saline (n = 9) and Adriamycin treated with 20 mg/kg Adriamycin (n = 7). Several indices were examined, including glomerular number, glomerular volume, glomerular volume heterogeneity, and spatial density at each glomerulus and in each cortical layer (superficial, midcortical, and juxtamedullary). In the Adriamycin-treated animals, glomerular number decreased significantly in the left kidney [control: 8,298 ± 221, Adriamycin: 6,781 ± 630 (mean ± SE)] and right kidney (control: 7,317 ± 367, Adriamycin: 5,522 ± 508), and glomerular volume heterogeneity increased significantly in the left kidney (control: 0.642 ± 0.015, Adriamycin: 0.786 ± 0.018) and right kidney (control: 0.739 ± 0.016, Adriamycin: 0.937 ± 0.023). Glomerular spatial density was not affected. Glomerular volume heterogeneity increased significantly in the superficial and midcortical layers of the Adriamycin cohort. Adriamycin did not affect glomerular volume or density metrics in the juxtamedullary region, suggesting a compensatory mechanism of juxtamedullary glomeruli to injury in the outer cortical layers. Left/right asymmetry was observed in kidney size and various glomeruli metrics. The methods presented here can be used to evaluate renal disease models with subtle changes in glomerular endowment locally or across the entire kidney, and they provide an imaging tool to investigate diverse interventions and therapeutic drugs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Physiology-Renal Physiology The American Physiological Society

Loading next page...
 
/lp/the-american-physiological-society/micro-ct-imaging-and-structural-analysis-of-glomeruli-in-a-model-of-b6HdpwYl7p

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1931-857x
eISSN
1522-1466
DOI
10.1152/ajprenal.00331.2018
Publisher site
See Article on Publisher Site

Abstract

Glomeruli number and size are important for determining the pathogenesis of glomerular disease, chronic kidney disease, and hypertension. Moreover, renal injury can occur in specific cortical layers and alter glomerular spatial distribution. In this study, we present a comprehensive structural analysis of glomeruli in a model of Adriamycin (doxorubicin) nephropathy. Glomeruli are imaged (micro-CT at 10 × 10 × 10 μm3) in kidney specimens from C57Bl/6 mouse cohorts: control treated with saline (n = 9) and Adriamycin treated with 20 mg/kg Adriamycin (n = 7). Several indices were examined, including glomerular number, glomerular volume, glomerular volume heterogeneity, and spatial density at each glomerulus and in each cortical layer (superficial, midcortical, and juxtamedullary). In the Adriamycin-treated animals, glomerular number decreased significantly in the left kidney [control: 8,298 ± 221, Adriamycin: 6,781 ± 630 (mean ± SE)] and right kidney (control: 7,317 ± 367, Adriamycin: 5,522 ± 508), and glomerular volume heterogeneity increased significantly in the left kidney (control: 0.642 ± 0.015, Adriamycin: 0.786 ± 0.018) and right kidney (control: 0.739 ± 0.016, Adriamycin: 0.937 ± 0.023). Glomerular spatial density was not affected. Glomerular volume heterogeneity increased significantly in the superficial and midcortical layers of the Adriamycin cohort. Adriamycin did not affect glomerular volume or density metrics in the juxtamedullary region, suggesting a compensatory mechanism of juxtamedullary glomeruli to injury in the outer cortical layers. Left/right asymmetry was observed in kidney size and various glomeruli metrics. The methods presented here can be used to evaluate renal disease models with subtle changes in glomerular endowment locally or across the entire kidney, and they provide an imaging tool to investigate diverse interventions and therapeutic drugs.

Journal

American Journal of Physiology-Renal PhysiologyThe American Physiological Society

Published: Jan 1, 2019

References