Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Intermittency in the Control of Continuous Force Production

Intermittency in the Control of Continuous Force Production Abstract The purpose of the current investigation was to examine the influence of intermittency in visual information processes on intermittency in the control continuous force production. Adult human participants were required to maintain force at, and minimize variability around, a force target over an extended duration (15 s), while the intermittency of on-line visual feedback presentation was varied across conditions. This was accomplished by varying the frequency of successive force-feedback deliveries presented on a video display. As a function of a 128-fold increase in feedback frequency (0.2 to 25.6 Hz), performance quality improved according to hyperbolic functions (e.g., force variability decayed), reaching asymptotic values near the 6.4-Hz feedback frequency level. Thus, the briefest interval over which visual information could be integrated and used to correct errors in motor output was approximately 150 ms. The observed reductions in force variability were correlated with parallel declines in spectral power at about 1 Hz in the frequency profile of force output. In contrast, power at higher frequencies in the force output spectrum were uncorrelated with increases in feedback frequency. Thus, there was a considerable lag between the generation of motor output corrections (1 Hz) and the processing of visual feedback information (6.4 Hz). To reconcile these differences in visual and motor processing times, we proposed a model where error information is accumulated by visual information processes at a maximum frequency of 6.4 per second, and the motor system generates a correction on the basis of the accumulated information at the end of each 1-s interval. Footnotes Present address and address for reprint requests: A. B. Slifkin, Dept. of Psychology, Cleveland State University, Cleveland, OH 44115. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked " advertisement " in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Copyright © 2000 The American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Intermittency in the Control of Continuous Force Production

Loading next page...
 
/lp/the-american-physiological-society/intermittency-in-the-control-of-continuous-force-production-RGmOYuPljD

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract The purpose of the current investigation was to examine the influence of intermittency in visual information processes on intermittency in the control continuous force production. Adult human participants were required to maintain force at, and minimize variability around, a force target over an extended duration (15 s), while the intermittency of on-line visual feedback presentation was varied across conditions. This was accomplished by varying the frequency of successive force-feedback deliveries presented on a video display. As a function of a 128-fold increase in feedback frequency (0.2 to 25.6 Hz), performance quality improved according to hyperbolic functions (e.g., force variability decayed), reaching asymptotic values near the 6.4-Hz feedback frequency level. Thus, the briefest interval over which visual information could be integrated and used to correct errors in motor output was approximately 150 ms. The observed reductions in force variability were correlated with parallel declines in spectral power at about 1 Hz in the frequency profile of force output. In contrast, power at higher frequencies in the force output spectrum were uncorrelated with increases in feedback frequency. Thus, there was a considerable lag between the generation of motor output corrections (1 Hz) and the processing of visual feedback information (6.4 Hz). To reconcile these differences in visual and motor processing times, we proposed a model where error information is accumulated by visual information processes at a maximum frequency of 6.4 per second, and the motor system generates a correction on the basis of the accumulated information at the end of each 1-s interval. Footnotes Present address and address for reprint requests: A. B. Slifkin, Dept. of Psychology, Cleveland State University, Cleveland, OH 44115. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked " advertisement " in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Copyright © 2000 The American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Oct 1, 2000

There are no references for this article.