Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract We present a deep learning model estimating carbon dioxide equivalent (CO2e) emissions in the real estate sector. The model, which utilizes convolutional neural networks (CNNs) and image classification techniques, is designed to estimate CO2e emissions based on publicly available images of buildings and their corresponding emissions. Our findings show that the model has the ability to provide reasonably accurate estimations of CO2e emissions using images as the sole input. Notably, incorporating primary energy sources as additional input further improves the accuracy up to 75%. The creation of such a model is particularly important in the fight against climate change, as it allows for transparency and fast identification of buildings, contributing significantly to CO2e emissions in the building sector. Currently, information on emission intensity in the real estate sector is scarce, with only a few countries collecting and providing the required data. Our model can help reduce this gap and provide valuable insights into the carbon footprint of the real estate sector.
Journal of Sustainable Real Estate – Taylor & Francis
Published: Dec 31, 2023
Keywords: Deep learning; decarbonization; CO2 footprint; image classification
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.