Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Numerical simulation of laterite confined masonry building subjected to quasi-static monotonic lateral loading

Numerical simulation of laterite confined masonry building subjected to quasi-static monotonic... The paper attempts to establish a relationship between strength of laterite units and mortar to predict masonry strength and elastic modulus of laterite masonry based on material properties reported in literature. The properties obtained from derived analytical models were used as input parameters for finite element analysis (FEA) of laterite confined masonry (LCM) buildings under quasi-static loading. Numerical studies were performed on LCM buildings up to four stories to study seismic behaviour. LCM buildings upto three storeys demonstrated stresses within the permissible limits for the wall thickness of 150 mm, while four storey LCM building showed high stress concentration exceeding the permissible limits, for which ground storey wall thickness may be increased to 300 mm. One storey LCM building resisted lateral load equivalent to 1.02 g of its mass, while the corresponding values for two, three and four storey LCM buildings were 0.40 g, 0.23 g and 0.13 g, respectively. LCM buildings up to three storey demonstrated maximum damage index in the range of 0.8 to 0.85, indicating collapse prevention state. Howbeit, four storey LCM building exhibited damage index of 0.91 at maximum displacement, which corresponds to collapse state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Integrity and Maintenance Taylor & Francis

Numerical simulation of laterite confined masonry building subjected to quasi-static monotonic lateral loading

Numerical simulation of laterite confined masonry building subjected to quasi-static monotonic lateral loading

Journal of Structural Integrity and Maintenance , Volume 8 (1): 11 – Jan 2, 2023

Abstract

The paper attempts to establish a relationship between strength of laterite units and mortar to predict masonry strength and elastic modulus of laterite masonry based on material properties reported in literature. The properties obtained from derived analytical models were used as input parameters for finite element analysis (FEA) of laterite confined masonry (LCM) buildings under quasi-static loading. Numerical studies were performed on LCM buildings up to four stories to study seismic behaviour. LCM buildings upto three storeys demonstrated stresses within the permissible limits for the wall thickness of 150 mm, while four storey LCM building showed high stress concentration exceeding the permissible limits, for which ground storey wall thickness may be increased to 300 mm. One storey LCM building resisted lateral load equivalent to 1.02 g of its mass, while the corresponding values for two, three and four storey LCM buildings were 0.40 g, 0.23 g and 0.13 g, respectively. LCM buildings up to three storey demonstrated maximum damage index in the range of 0.8 to 0.85, indicating collapse prevention state. Howbeit, four storey LCM building exhibited damage index of 0.91 at maximum displacement, which corresponds to collapse state.

Loading next page...
 
/lp/taylor-francis/numerical-simulation-of-laterite-confined-masonry-building-subjected-307MXtZKKt

References (49)

Publisher
Taylor & Francis
Copyright
© 2023 Korea Institute for Structural Maintenance and Inspection
ISSN
2470-5322
eISSN
2470-5314
DOI
10.1080/24705314.2022.2142895
Publisher site
See Article on Publisher Site

Abstract

The paper attempts to establish a relationship between strength of laterite units and mortar to predict masonry strength and elastic modulus of laterite masonry based on material properties reported in literature. The properties obtained from derived analytical models were used as input parameters for finite element analysis (FEA) of laterite confined masonry (LCM) buildings under quasi-static loading. Numerical studies were performed on LCM buildings up to four stories to study seismic behaviour. LCM buildings upto three storeys demonstrated stresses within the permissible limits for the wall thickness of 150 mm, while four storey LCM building showed high stress concentration exceeding the permissible limits, for which ground storey wall thickness may be increased to 300 mm. One storey LCM building resisted lateral load equivalent to 1.02 g of its mass, while the corresponding values for two, three and four storey LCM buildings were 0.40 g, 0.23 g and 0.13 g, respectively. LCM buildings up to three storey demonstrated maximum damage index in the range of 0.8 to 0.85, indicating collapse prevention state. Howbeit, four storey LCM building exhibited damage index of 0.91 at maximum displacement, which corresponds to collapse state.

Journal

Journal of Structural Integrity and MaintenanceTaylor & Francis

Published: Jan 2, 2023

Keywords: Laterite blocks; confined masonry; stress analysis; seismic response; seismic parameters

There are no references for this article.