Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Delamination/disbond propagation analysis in adhesively bonded composite joints using guided waves

Delamination/disbond propagation analysis in adhesively bonded composite joints using guided waves This paper investigates debonding and delamination assessment by means of Lamb waves in adhesively bonded composite joints. Adhesively bonded wide CFRP panels with initial delamination were subjected to fatigue loading. A segment of a group velocity dispersion curve was constructed for the plain panel and the bonded section. The fundamental asymmetrical Lamb wave mode (A0) was utilized to evaluate damage propagation. The depth of debonding/delamination and the extent of the damage within the bonded section were analyzed in relation to the group velocity change of the A0 mode. The results indicate that a suitable sensor placement and a proper frequency selection enable the assessment of the interface failure in the three-layer system. Based on the time delays, it was possible to distinguish delamination in the specific adherent. Metallographic analysis confirmed the depth of delamination propagation. Guided wave-based measurements were compared to and verified with ultrasonic A-scans. Additionally, RAPID algorithm was utilized to visualize damage extent with the first damage detection in 29.4 % of the fatigue life. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Integrity and Maintenance Taylor & Francis

Delamination/disbond propagation analysis in adhesively bonded composite joints using guided waves

Delamination/disbond propagation analysis in adhesively bonded composite joints using guided waves

Journal of Structural Integrity and Maintenance , Volume 7 (1): 9 – Jan 2, 2022

Abstract

This paper investigates debonding and delamination assessment by means of Lamb waves in adhesively bonded composite joints. Adhesively bonded wide CFRP panels with initial delamination were subjected to fatigue loading. A segment of a group velocity dispersion curve was constructed for the plain panel and the bonded section. The fundamental asymmetrical Lamb wave mode (A0) was utilized to evaluate damage propagation. The depth of debonding/delamination and the extent of the damage within the bonded section were analyzed in relation to the group velocity change of the A0 mode. The results indicate that a suitable sensor placement and a proper frequency selection enable the assessment of the interface failure in the three-layer system. Based on the time delays, it was possible to distinguish delamination in the specific adherent. Metallographic analysis confirmed the depth of delamination propagation. Guided wave-based measurements were compared to and verified with ultrasonic A-scans. Additionally, RAPID algorithm was utilized to visualize damage extent with the first damage detection in 29.4 % of the fatigue life.

Loading next page...
 
/lp/taylor-francis/delamination-disbond-propagation-analysis-in-adhesively-bonded-0Os47AgxZh

References (26)

Publisher
Taylor & Francis
Copyright
© 2022 Korea Institute for Structural Maintenance and Inspection
ISSN
2470-5322
eISSN
2470-5314
DOI
10.1080/24705314.2021.1971894
Publisher site
See Article on Publisher Site

Abstract

This paper investigates debonding and delamination assessment by means of Lamb waves in adhesively bonded composite joints. Adhesively bonded wide CFRP panels with initial delamination were subjected to fatigue loading. A segment of a group velocity dispersion curve was constructed for the plain panel and the bonded section. The fundamental asymmetrical Lamb wave mode (A0) was utilized to evaluate damage propagation. The depth of debonding/delamination and the extent of the damage within the bonded section were analyzed in relation to the group velocity change of the A0 mode. The results indicate that a suitable sensor placement and a proper frequency selection enable the assessment of the interface failure in the three-layer system. Based on the time delays, it was possible to distinguish delamination in the specific adherent. Metallographic analysis confirmed the depth of delamination propagation. Guided wave-based measurements were compared to and verified with ultrasonic A-scans. Additionally, RAPID algorithm was utilized to visualize damage extent with the first damage detection in 29.4 % of the fatigue life.

Journal

Journal of Structural Integrity and MaintenanceTaylor & Francis

Published: Jan 2, 2022

Keywords: Asymmetrical mode; group velocity; Lamb waves; structural health monitoring; time delay

There are no references for this article.