Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

BCI-based sensorimotor rhythm training can affect individuated finger movements

BCI-based sensorimotor rhythm training can affect individuated finger movements Brain-computer interface (BCI) technology can restore communication and control to people who are severely paralyzed. BCI technology might also be able to enhance rehabilitation of motor function. We have previously shown that pre-movement sensorimotor rhythm (SMR) amplitude affects reaction time and performance on a joystick-based cursor movement task. The present study explores in adults without motor impairment the possibility that pre-movement SMR amplitude affects performance of individuated finger movements. In Phase 1, 8 individuals performed a finger flexion task that was monitored by an exoskeleton. During a 1-sec preparatory period, two colored targets on a video monitor cued flexion of the index finger, middle finger, both fingers, or neither finger; sudden color change then triggered the movement (or non-movement). SMR features (i.e. EEG amplitudes in specific frequency bands at specific scalp locations) in the pre-movement EEG that correlated with movement versus no movement were identified. In Phase 2, the participants learned to increase or decrease these SMR features to control a two-target BCI task. Finally, in Phase 3, they were asked to increase or decrease the SMR features to initiate the finger flexion task of Phase 1 and the impact on finger flexion performance was assessed. After BCI training, pre-movement SMR feature amplitude affected performance in a subset of individuals: lower amplitude was associated with shorter movement onset. In a subset of individuals, the beneficial effect on performance of lower SMR amplitude was greater when both fingers were flexed than when one was flexed and the other remained extended; thus, the impact of SMR amplitude modulation depended on the specificity of the subsequent motor task. These results indicate that BCI-based training of SMR activity in the pre-movement preparatory period can affect finger movements in a subset of individuals. They encourage studies that integrate such training into rehabilitation protocols and examine its capacity to enhance restoration of useful hand function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain-Computer Interfaces Taylor & Francis

BCI-based sensorimotor rhythm training can affect individuated finger movements

BCI-based sensorimotor rhythm training can affect individuated finger movements

Abstract

Brain-computer interface (BCI) technology can restore communication and control to people who are severely paralyzed. BCI technology might also be able to enhance rehabilitation of motor function. We have previously shown that pre-movement sensorimotor rhythm (SMR) amplitude affects reaction time and performance on a joystick-based cursor movement task. The present study explores in adults without motor impairment the possibility that pre-movement SMR amplitude affects performance of...
Loading next page...
 
/lp/taylor-francis/bci-based-sensorimotor-rhythm-training-can-affect-individuated-finger-wxeDspm69b
Publisher
Taylor & Francis
Copyright
© 2020 Informa UK Limited, trading as Taylor & Francis Group
ISSN
2326-2621
eISSN
2326-263x
DOI
10.1080/2326263X.2020.1763060
Publisher site
See Article on Publisher Site

Abstract

Brain-computer interface (BCI) technology can restore communication and control to people who are severely paralyzed. BCI technology might also be able to enhance rehabilitation of motor function. We have previously shown that pre-movement sensorimotor rhythm (SMR) amplitude affects reaction time and performance on a joystick-based cursor movement task. The present study explores in adults without motor impairment the possibility that pre-movement SMR amplitude affects performance of individuated finger movements. In Phase 1, 8 individuals performed a finger flexion task that was monitored by an exoskeleton. During a 1-sec preparatory period, two colored targets on a video monitor cued flexion of the index finger, middle finger, both fingers, or neither finger; sudden color change then triggered the movement (or non-movement). SMR features (i.e. EEG amplitudes in specific frequency bands at specific scalp locations) in the pre-movement EEG that correlated with movement versus no movement were identified. In Phase 2, the participants learned to increase or decrease these SMR features to control a two-target BCI task. Finally, in Phase 3, they were asked to increase or decrease the SMR features to initiate the finger flexion task of Phase 1 and the impact on finger flexion performance was assessed. After BCI training, pre-movement SMR feature amplitude affected performance in a subset of individuals: lower amplitude was associated with shorter movement onset. In a subset of individuals, the beneficial effect on performance of lower SMR amplitude was greater when both fingers were flexed than when one was flexed and the other remained extended; thus, the impact of SMR amplitude modulation depended on the specificity of the subsequent motor task. These results indicate that BCI-based training of SMR activity in the pre-movement preparatory period can affect finger movements in a subset of individuals. They encourage studies that integrate such training into rehabilitation protocols and examine its capacity to enhance restoration of useful hand function.

Journal

Brain-Computer InterfacesTaylor & Francis

Published: Apr 2, 2020

Keywords: Sensorimotor beta rhythms; rehabilitation; robotics; movement preparation

References