Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Well-Posedness for Constrained Hamilton-Jacobi Equations

Well-Posedness for Constrained Hamilton-Jacobi Equations The goal of this paper is to study a Hamilton-Jacobi equation{ut=H(Du)+R(x,I(t))in Rn×(0,∞),supRnu(⋅,t)=0on [0,∞),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \textstyle\begin{cases} u_{t}=H(Du)+R(x,I(t)) &\text{in }\mathbb{R}^{n} \times (0,\infty ), \\ \sup_{\mathbb{R}^{n}} u(\cdot ,t)=0 &\text{on }[0,\infty ), \end{cases} $$\end{document} with initial conditions I(0)=I0>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$I(0)=I_{0}>0$\end{document}, u(x,0)=u0(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$u(x,0)=u_{0}(x)$\end{document} on Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathbb{R}^{n}$\end{document}. Here (u,I)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(u,I)$\end{document} is a pair of unknowns and the Hamiltonian H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$H$\end{document} and the reaction term R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$R$\end{document} are given. Moreover, I(t)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$I(t)$\end{document} is an unknown constraint (Lagrange multiplier) that constrains the supremum of u\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$u$\end{document} to be always zero. We construct a solution in the viscosity setting using a fixed point argument when the reaction term R(x,I)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$R(x,I)$\end{document} is strictly decreasing in I\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$I$\end{document}. We also discuss both uniqueness and nonuniqueness. For uniqueness, a certain structural assumption on R(x,I)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$R(x,I)$\end{document} is needed. We also provide an example with infinitely many solutions when the reaction term is not strictly decreasing in I\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$I$\end{document}. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Applicandae Mathematicae Springer Journals

Well-Posedness for Constrained Hamilton-Jacobi Equations

Acta Applicandae Mathematicae , Volume 167 (1) – Jun 24, 2020

Loading next page...
 
/lp/springer-journals/well-posedness-for-constrained-hamilton-jacobi-equations-Ig0dBTpas0

References (21)

Publisher
Springer Journals
Copyright
Copyright © Springer Nature B.V. 2019
Subject
Mathematics; Computational Mathematics and Numerical Analysis; Applications of Mathematics; Partial Differential Equations; Probability Theory and Stochastic Processes; Calculus of Variations and Optimal Control; Optimization
ISSN
0167-8019
eISSN
1572-9036
DOI
10.1007/s10440-019-00267-z
Publisher site
See Article on Publisher Site

Abstract

The goal of this paper is to study a Hamilton-Jacobi equation{ut=H(Du)+R(x,I(t))in Rn×(0,∞),supRnu(⋅,t)=0on [0,∞),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \textstyle\begin{cases} u_{t}=H(Du)+R(x,I(t)) &\text{in }\mathbb{R}^{n} \times (0,\infty ), \\ \sup_{\mathbb{R}^{n}} u(\cdot ,t)=0 &\text{on }[0,\infty ), \end{cases} $$\end{document} with initial conditions I(0)=I0>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$I(0)=I_{0}>0$\end{document}, u(x,0)=u0(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$u(x,0)=u_{0}(x)$\end{document} on Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathbb{R}^{n}$\end{document}. Here (u,I)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(u,I)$\end{document} is a pair of unknowns and the Hamiltonian H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$H$\end{document} and the reaction term R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$R$\end{document} are given. Moreover, I(t)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$I(t)$\end{document} is an unknown constraint (Lagrange multiplier) that constrains the supremum of u\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$u$\end{document} to be always zero. We construct a solution in the viscosity setting using a fixed point argument when the reaction term R(x,I)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$R(x,I)$\end{document} is strictly decreasing in I\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$I$\end{document}. We also discuss both uniqueness and nonuniqueness. For uniqueness, a certain structural assumption on R(x,I)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$R(x,I)$\end{document} is needed. We also provide an example with infinitely many solutions when the reaction term is not strictly decreasing in I\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$I$\end{document}.

Journal

Acta Applicandae MathematicaeSpringer Journals

Published: Jun 24, 2020

There are no references for this article.