Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Well-Approximable Points for Julia Sets with Parabo and Critical Points

Well-Approximable Points for Julia Sets with Parabo and Critical Points In this paper we consider rational functions % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! $f: \overline {\rm C} \rightarrow \overline {\rm C}$ with parabolic and critical points contained in their Julia sets J(f) such that % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! $$\sum^{\infty}_{n = 1}|(f^{n})^\prime(f(c))|^{-1}< \infty$$ for each critical point c ∈ J(f). We calculate the Hausdorff dimensions of subsets of J(f) consisting of elements z for which % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaGagiyAaKMaeiOBa4MaeiOzay2aaiWaaeaaieaacqWF % KbazcqWFPbqAcqWFZbWCcqWF0baDdaqadaqaaiabdAgaMnaaCaaale % qabaGaemOBa4gaaOWaaeWaaeaacqWG6bGEaiaawIcacaGLPaaacqGG % SaaltCvAUfeBSn0BKvguHDwzZbqehiuy0fMBNbacgaGaa4hiaiab-n % eadjab-jhaYjab-LgaPjab-rha0naabmaabaGaemOzaygacaGLOaGa % ayzkaaaacaGLOaGaayzkaaGaeiOoaOJaemOBa4MaeyyzImRaeGimaa % dacaGL7bGaayzFaaGaeyOpa4JaeGimaadaaa!66EE! $$\inf \left\{ {dist\left( {f^n \left( z \right), Crit\left( f \right)} \right):n \geqslant 0} \right\} > 0$$ and which are well-approximable by backward iterates of the parabolic periodic points of f. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

Well-Approximable Points for Julia Sets with Parabo and Critical Points

Loading next page...
 
/lp/springer-journals/well-approximable-points-for-julia-sets-with-parabo-and-critical-ahLdT5R2fA
Publisher
Springer Journals
Copyright
Copyright © 2001 by Heldermann Verlag
Subject
Mathematics; Analysis; Computational Mathematics and Numerical Analysis; Functions of a Complex Variable
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/BF03320979
Publisher site
See Article on Publisher Site

Abstract

In this paper we consider rational functions % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! $f: \overline {\rm C} \rightarrow \overline {\rm C}$ with parabolic and critical points contained in their Julia sets J(f) such that % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! $$\sum^{\infty}_{n = 1}|(f^{n})^\prime(f(c))|^{-1}< \infty$$ for each critical point c ∈ J(f). We calculate the Hausdorff dimensions of subsets of J(f) consisting of elements z for which % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaGagiyAaKMaeiOBa4MaeiOzay2aaiWaaeaaieaacqWF % KbazcqWFPbqAcqWFZbWCcqWF0baDdaqadaqaaiabdAgaMnaaCaaale % qabaGaemOBa4gaaOWaaeWaaeaacqWG6bGEaiaawIcacaGLPaaacqGG % SaaltCvAUfeBSn0BKvguHDwzZbqehiuy0fMBNbacgaGaa4hiaiab-n % eadjab-jhaYjab-LgaPjab-rha0naabmaabaGaemOzaygacaGLOaGa % ayzkaaaacaGLOaGaayzkaaGaeiOoaOJaemOBa4MaeyyzImRaeGimaa % dacaGL7bGaayzFaaGaeyOpa4JaeGimaadaaa!66EE! $$\inf \left\{ {dist\left( {f^n \left( z \right), Crit\left( f \right)} \right):n \geqslant 0} \right\} > 0$$ and which are well-approximable by backward iterates of the parabolic periodic points of f.

Journal

Computational Methods and Function TheorySpringer Journals

Published: Mar 7, 2013

References