Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay

Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a... In reservoirs, water level fluctuations strongly influence phytoplankton development. However, studies on the response of phytoplankton in the reservoir-bay to water level fluctuations are very scarce, especially in the highly dynamic reservoir system, for instance, the Three Gorges Reservoir (TGR) on the Yangtze River in China. Therefore, we carried out weekly monitoring in a typical tributary bay—Xiangxi Bay of the TGR from March 2008 to March 2009, to analyze the dynamics of phytoplankton functional groups, as well as their response to the water level fluctuations and other environmental conditions. The phytoplankton functional groups G (short, nutrient-rich water columns with high light and without nutrient deficiency), M (dielly mixed layers of small eutrophic, low latitude with high insolation and without flushing and low total light) and Lo (summer epilimnia in mesotrophic lakes with segregated nutrients and without prolonged or deep mixing) were the most important in biomass, mainly represented by Pandorina morum and Eudorina elegans, Microcystis aeruginosa, Peridiniopsis niei and Ceratium hirundinella, respectively. The dominant functional groups had close relationships with the water level fluctuations, light and nutrient, etc. Principal components analysis and redundancy analysis indicated that phytoplankton functional groups in Xiangxi Bay were restricted by the mixing regime and other abiotic variables under the influences of the mixing regime. In Xiangxi Bay, the water level fluctuation showed significant correlations with many physicochemical variables, including the mixing depth (r = 0.97, p < 0.001) and the relative water column stability (r = −0.80, p < 0.001). The study implied that water level fluctuations had complex influence on environmental changes and selecting for phytoplankton functional groups in a highly dynamic reservoir-bay. The important characteristics of the dominant phytoplankton functional groups in Xiangxi Bay were also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aquatic Ecology Springer Journals

Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay

Loading next page...
 
/lp/springer-journals/weekly-dynamics-of-phytoplankton-functional-groups-under-high-water-H3tk41WT00

References (68)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Ecosystems; Freshwater & Marine Ecology
ISSN
1386-2588
eISSN
1573-5125
DOI
10.1007/s10452-010-9346-4
Publisher site
See Article on Publisher Site

Abstract

In reservoirs, water level fluctuations strongly influence phytoplankton development. However, studies on the response of phytoplankton in the reservoir-bay to water level fluctuations are very scarce, especially in the highly dynamic reservoir system, for instance, the Three Gorges Reservoir (TGR) on the Yangtze River in China. Therefore, we carried out weekly monitoring in a typical tributary bay—Xiangxi Bay of the TGR from March 2008 to March 2009, to analyze the dynamics of phytoplankton functional groups, as well as their response to the water level fluctuations and other environmental conditions. The phytoplankton functional groups G (short, nutrient-rich water columns with high light and without nutrient deficiency), M (dielly mixed layers of small eutrophic, low latitude with high insolation and without flushing and low total light) and Lo (summer epilimnia in mesotrophic lakes with segregated nutrients and without prolonged or deep mixing) were the most important in biomass, mainly represented by Pandorina morum and Eudorina elegans, Microcystis aeruginosa, Peridiniopsis niei and Ceratium hirundinella, respectively. The dominant functional groups had close relationships with the water level fluctuations, light and nutrient, etc. Principal components analysis and redundancy analysis indicated that phytoplankton functional groups in Xiangxi Bay were restricted by the mixing regime and other abiotic variables under the influences of the mixing regime. In Xiangxi Bay, the water level fluctuation showed significant correlations with many physicochemical variables, including the mixing depth (r = 0.97, p < 0.001) and the relative water column stability (r = −0.80, p < 0.001). The study implied that water level fluctuations had complex influence on environmental changes and selecting for phytoplankton functional groups in a highly dynamic reservoir-bay. The important characteristics of the dominant phytoplankton functional groups in Xiangxi Bay were also discussed.

Journal

Aquatic EcologySpringer Journals

Published: Nov 3, 2010

There are no references for this article.