Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Wave propagation in two-dimensional disordered piezoelectric phononic crystals

Wave propagation in two-dimensional disordered piezoelectric phononic crystals Abstract The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder. In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Acta Mechanica Solida Sinica" Springer Journals

Wave propagation in two-dimensional disordered piezoelectric phononic crystals

Loading next page...
 
/lp/springer-journals/wave-propagation-in-two-dimensional-disordered-piezoelectric-phononic-aTwCvQSlTq
Publisher
Springer Journals
Copyright
2008 The Chinese Society of Theoretical and Applied Mechanics and Technology
ISSN
0894-9166
eISSN
1860-2134
DOI
10.1007/s10338-008-0861-y
Publisher site
See Article on Publisher Site

Abstract

Abstract The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder. In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.

Journal

"Acta Mechanica Solida Sinica"Springer Journals

Published: Dec 1, 2008

Keywords: Theoretical and Applied Mechanics; Surfaces and Interfaces, Thin Films; Classical Mechanics

References