Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Water resistance and antimicrobial properties of poly(vinyl alcohol) composite films containing surface-modified tetrapod zinc oxide whiskers

Water resistance and antimicrobial properties of poly(vinyl alcohol) composite films containing... Abstract Tetrapod zinc oxide whiskers (TZnO-W) were successfully synthesized via a thermal oxidation method and surface-modified TZnO-W (STZnO-W) were prepared using a silane coupling agent to ensure good dispersion interaction in a poly(vinyl alcohol) (PVA) matrix. Their chemical structure, morphology, and antimicrobial properties were investigated. Additionally, five different PVA/STZnO-W composite films were prepared with different STZnO-W content. Compared with pure PVA, the thermal properties and moisture barrier properties of the PVA/STZnO-W composite films were enhanced as STZnO-W, which may be the result of the strong interfacial interactions of the -OH groups of PVA and -NH2 of STZnO-W in the composite films. Furthermore, the addition of STZnO-W with a high surface to volume ratio and hydrophobicity may act as an excellent moisture barrier and form a tortuous path to adsorb and diffuse water molecules in the PVA matrix. The PVA/STZnO-W composite films showed remarkably enhanced antimicrobial activity against gram-negative micro-organisms such as Escherichia coli (E. coli) and Vibrio vulnificus (V. vulnificus) compared with gram-positive micro-organisms, such as Staphylococcus aureus (S. aureus). The enhanced thermal, moisture and antimicrobial properties achieved by incorporating STZnO-W can be advantageous in various packaging applications, though the antimicrobial properties around gram-positive micro-organisms require further research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Macromolecular Research" Springer Journals

Water resistance and antimicrobial properties of poly(vinyl alcohol) composite films containing surface-modified tetrapod zinc oxide whiskers

"Macromolecular Research" , Volume 23 (12): 10 – Dec 1, 2015

Loading next page...
 
/lp/springer-journals/water-resistance-and-antimicrobial-properties-of-poly-vinyl-alcohol-v4L3M1i7IY

References (45)

Publisher
Springer Journals
Copyright
2015 The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht
ISSN
1598-5032
eISSN
2092-7673
DOI
10.1007/s13233-015-3148-4
Publisher site
See Article on Publisher Site

Abstract

Abstract Tetrapod zinc oxide whiskers (TZnO-W) were successfully synthesized via a thermal oxidation method and surface-modified TZnO-W (STZnO-W) were prepared using a silane coupling agent to ensure good dispersion interaction in a poly(vinyl alcohol) (PVA) matrix. Their chemical structure, morphology, and antimicrobial properties were investigated. Additionally, five different PVA/STZnO-W composite films were prepared with different STZnO-W content. Compared with pure PVA, the thermal properties and moisture barrier properties of the PVA/STZnO-W composite films were enhanced as STZnO-W, which may be the result of the strong interfacial interactions of the -OH groups of PVA and -NH2 of STZnO-W in the composite films. Furthermore, the addition of STZnO-W with a high surface to volume ratio and hydrophobicity may act as an excellent moisture barrier and form a tortuous path to adsorb and diffuse water molecules in the PVA matrix. The PVA/STZnO-W composite films showed remarkably enhanced antimicrobial activity against gram-negative micro-organisms such as Escherichia coli (E. coli) and Vibrio vulnificus (V. vulnificus) compared with gram-positive micro-organisms, such as Staphylococcus aureus (S. aureus). The enhanced thermal, moisture and antimicrobial properties achieved by incorporating STZnO-W can be advantageous in various packaging applications, though the antimicrobial properties around gram-positive micro-organisms require further research.

Journal

"Macromolecular Research"Springer Journals

Published: Dec 1, 2015

There are no references for this article.