Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Vision-based motion planning for an autonomous motorcycle onill-structured roads

Vision-based motion planning for an autonomous motorcycle onill-structured roads We report our development of a vision-based motion planning system for an autonomous motorcycle designed for desert terrain, where uniform road surface and lane markings are not present. The motion planning is based on a vision vector space (V2-Space), which is a unitary vector set that represents local collision-free directions in the image coordinate system. The V2-Space is constructed by extracting the vectors based on the similarity of adjacent pixels, which captures both the color information and the directional information from prior vehicle tire tracks and pedestrian footsteps. We report how the V2-Space is constructed to reduce the impact of varying lighting conditions in outdoor environments. We also show how the V2-Space can be used to incorporate vehicle kinematic, dynamic, and time-delay constraints in motion planning to fit the highly dynamic requirements of the motorcycle. The combined algorithm of the V2-Space construction and the motion planning runs in O(n) time, where n is the number of pixels in the captured image. Experiments show that our algorithm outputs correct robot motion commands more than 90% of the time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Vision-based motion planning for an autonomous motorcycle onill-structured roads

Loading next page...
 
/lp/springer-journals/vision-based-motion-planning-for-an-autonomous-motorcycle-onill-qaxNxsiffd
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-007-9042-y
Publisher site
See Article on Publisher Site

Abstract

We report our development of a vision-based motion planning system for an autonomous motorcycle designed for desert terrain, where uniform road surface and lane markings are not present. The motion planning is based on a vision vector space (V2-Space), which is a unitary vector set that represents local collision-free directions in the image coordinate system. The V2-Space is constructed by extracting the vectors based on the similarity of adjacent pixels, which captures both the color information and the directional information from prior vehicle tire tracks and pedestrian footsteps. We report how the V2-Space is constructed to reduce the impact of varying lighting conditions in outdoor environments. We also show how the V2-Space can be used to incorporate vehicle kinematic, dynamic, and time-delay constraints in motion planning to fit the highly dynamic requirements of the motorcycle. The combined algorithm of the V2-Space construction and the motion planning runs in O(n) time, where n is the number of pixels in the captured image. Experiments show that our algorithm outputs correct robot motion commands more than 90% of the time.

Journal

Autonomous RobotsSpringer Journals

Published: Jun 27, 2007

References