Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Variants of Hörmander’s theorem on q-convex manifolds by a technique of infinitely many weights

Variants of Hörmander’s theorem on q-convex manifolds by a technique of infinitely many weights By introducing a new approximation technique in the L2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document} theory of the ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\bar{\partial }$$\end{document}-operator, Hörmander’s L2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document} variant of Andreotti-Grauert’s finiteness theorem is extended and refined on q-convex manifolds and weakly 1-complete manifolds. As an application, a question on the L2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document} cohomology suggested by a theory of Ueda (Tohoku Math J (2) 31(1):81–90, 1979), Ueda (J Math Kyoto Univ 22(4):583–607, 1982/83) is solved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Springer Journals

Variants of Hörmander’s theorem on q-convex manifolds by a technique of infinitely many weights

Loading next page...
 
/lp/springer-journals/variants-of-h-rmander-s-theorem-on-q-convex-manifolds-by-a-technique-Y6fDwzVSCl
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Mathematisches Seminar der Universität Hamburg 2021
ISSN
0025-5858
eISSN
1865-8784
DOI
10.1007/s12188-021-00237-z
Publisher site
See Article on Publisher Site

Abstract

By introducing a new approximation technique in the L2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document} theory of the ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\bar{\partial }$$\end{document}-operator, Hörmander’s L2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document} variant of Andreotti-Grauert’s finiteness theorem is extended and refined on q-convex manifolds and weakly 1-complete manifolds. As an application, a question on the L2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document} cohomology suggested by a theory of Ueda (Tohoku Math J (2) 31(1):81–90, 1979), Ueda (J Math Kyoto Univ 22(4):583–607, 1982/83) is solved.

Journal

Abhandlungen aus dem Mathematischen Seminar der Universität HamburgSpringer Journals

Published: Apr 1, 2021

Keywords: q-Convex manifolds; Weakly 1-complete manifolds; L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}; Harmonic representation; Approximation; Andreotti-Grauert’s finiteness theorem; Ueda theory; Primary 32E40; Secondary 32T05

References