Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Validating multi-rigid body simulation of a wild robot

Validating multi-rigid body simulation of a wild robot There exist few objective measures to evaluate or compare multi-rigid body dynamics simulations involving contact and friction. This absence creates uncertainty in simulation capabilities and accuracy, leaving users to wonder when can they trust simulations. Simulation science has focused on using theory and other simulations (verification) and real-world data (validation) to evaluate simulation correctness. With respect to rigid body dynamics, ballistic rigid body motion has been verified and validated, but rigid body simulations involving contact and friction are currently prone to producing results that appear inconsistent with real-world observations. Accurate validation is seldom performed for contacting “rigid” bodies, likely because the observation problem is so challenging (compared to, e.g., fluid dynamics, for which fluids are often transparent). This paper concentrates on a validation scenario for multi-rigid body dynamics with contact and friction, which are essential for simulating robotic locomotion and manipulation. We describe a collection and estimation process for telemetry data of a mechanically simple but highly dynamic, real-world robot whose motion is primarily driven by contact and friction, and we propose an approach for quantifying the performance of simulations of this robot. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Validating multi-rigid body simulation of a wild robot

Autonomous Robots , Volume 43 (6) – Oct 5, 2018

Loading next page...
 
/lp/springer-journals/validating-multi-rigid-body-simulation-of-a-wild-robot-EptgNbttMO

References (25)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Engineering; Robotics and Automation; Artificial Intelligence; Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-018-9805-7
Publisher site
See Article on Publisher Site

Abstract

There exist few objective measures to evaluate or compare multi-rigid body dynamics simulations involving contact and friction. This absence creates uncertainty in simulation capabilities and accuracy, leaving users to wonder when can they trust simulations. Simulation science has focused on using theory and other simulations (verification) and real-world data (validation) to evaluate simulation correctness. With respect to rigid body dynamics, ballistic rigid body motion has been verified and validated, but rigid body simulations involving contact and friction are currently prone to producing results that appear inconsistent with real-world observations. Accurate validation is seldom performed for contacting “rigid” bodies, likely because the observation problem is so challenging (compared to, e.g., fluid dynamics, for which fluids are often transparent). This paper concentrates on a validation scenario for multi-rigid body dynamics with contact and friction, which are essential for simulating robotic locomotion and manipulation. We describe a collection and estimation process for telemetry data of a mechanically simple but highly dynamic, real-world robot whose motion is primarily driven by contact and friction, and we propose an approach for quantifying the performance of simulations of this robot.

Journal

Autonomous RobotsSpringer Journals

Published: Oct 5, 2018

There are no references for this article.