Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Using Vulnerability and Exposure to Improve Robbery Prediction and Target Area Selection

Using Vulnerability and Exposure to Improve Robbery Prediction and Target Area Selection A large body of research has found that crime is much more likely to occur at certain places relative to others. Attempting to capitalize on this finding to maximize crime prevention, many police administrators have sought to narrow their department’s operational focus and allocate resources and attention to the most problematic locations. However, in the face of a growing number of technological advances in crime forecasting that have facilitated this trend, it is still unclear how to best identify the most appropriate set of places to which resources and attention should be directed. Our goal was to examine this issue by exploring the ways in which spatial vulnerabilities and exposures could be used to identify the best target areas for policing. Using the Theory of Risky Places as a guide, we employed kernel density estimation (KDE) to measure crime exposures and risk terrain modeling (RTM) to identify crime vulnerabilities with the expectation that crime would be predicted more accurately by integrating the outputs from these two methods. To test this hypothesis, our analysis utilized 1 year of data on street robbery in Brooklyn, New York. A common metric, the prediction accuracy index (PAI), was computed for KDE, RTM, and the integrated approach, over 1 month and 3 month intervals. We found that the integrated approach, on average and most frequently, produces the most accurate predictions. These results demonstrate that place-based policing and related policies can be improved via actionable intelligence produced from multiple crime analysis tools that are designed to measure unique aspects of the spatial dynamics of crime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Spatial Analysis and Policy Springer Journals

Using Vulnerability and Exposure to Improve Robbery Prediction and Target Area Selection

Loading next page...
 
/lp/springer-journals/using-vulnerability-and-exposure-to-improve-robbery-prediction-and-nmIaRJZcXe
Publisher
Springer Journals
Copyright
Copyright © Springer Nature B.V. 2019
Subject
Social Sciences; Human Geography; Landscape/Regional and Urban Planning; Regional/Spatial Science
ISSN
1874-463X
eISSN
1874-4621
DOI
10.1007/s12061-019-09294-7
Publisher site
See Article on Publisher Site

Abstract

A large body of research has found that crime is much more likely to occur at certain places relative to others. Attempting to capitalize on this finding to maximize crime prevention, many police administrators have sought to narrow their department’s operational focus and allocate resources and attention to the most problematic locations. However, in the face of a growing number of technological advances in crime forecasting that have facilitated this trend, it is still unclear how to best identify the most appropriate set of places to which resources and attention should be directed. Our goal was to examine this issue by exploring the ways in which spatial vulnerabilities and exposures could be used to identify the best target areas for policing. Using the Theory of Risky Places as a guide, we employed kernel density estimation (KDE) to measure crime exposures and risk terrain modeling (RTM) to identify crime vulnerabilities with the expectation that crime would be predicted more accurately by integrating the outputs from these two methods. To test this hypothesis, our analysis utilized 1 year of data on street robbery in Brooklyn, New York. A common metric, the prediction accuracy index (PAI), was computed for KDE, RTM, and the integrated approach, over 1 month and 3 month intervals. We found that the integrated approach, on average and most frequently, produces the most accurate predictions. These results demonstrate that place-based policing and related policies can be improved via actionable intelligence produced from multiple crime analysis tools that are designed to measure unique aspects of the spatial dynamics of crime.

Journal

Applied Spatial Analysis and PolicySpringer Journals

Published: Mar 15, 2020

References