Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Using local-spin k-exclusion algorithms to improve wait-free object implementations

Using local-spin k-exclusion algorithms to improve wait-free object implementations  We present the first shared-memory algorithms for k-exclusion in which all process blocking is achieved through the use of “local-spin” busy waiting. Such algorithms are designed to reduce interconnect traffic, which is important for good performance. Our k-exclusion algorithms are starvation-free, and are designed to be fast in the absence of contention, and to exhibit scalable performance as contention rises. In contrast, all previous starvation-free k-exclusion algorithms require unrealistic operations or generate excessive interconnect traffic under contention. We also show that efficient, starvation-free k-exclusion algorithms can be used to reduce the time and space overhead associated with existing wait-free shared object implementations, while still providing some resilience to delays and failures. The resulting “hybrid” object implementations combine the advantages of local-spin spin locks, which perform well in the absence of process delays (caused, for example, by preemptions), and wait-free algorithms, which effectively tolerate such delays. We present performance results that confirm that this k-exclusion-based technique can improve the performance of existing wait-free shared object implementations. These results also show that lock-based implementations can be susceptible to severe performance degradation under multiprogramming, while our hybrid implementations are not. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Distributed Computing Springer Journals

Using local-spin k-exclusion algorithms to improve wait-free object implementations

Distributed Computing , Volume 11 (1) – Dec 8, 1997

Loading next page...
 
/lp/springer-journals/using-local-spin-k-exclusion-algorithms-to-improve-wait-free-object-swFufRkjdy

References (26)

Publisher
Springer Journals
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Computer Communication Networks; Computer Hardware; Computer Systems Organization and Communication Networks; Software Engineering/Programming and Operating Systems; Theory of Computation
ISSN
0178-2770
eISSN
1432-0452
DOI
10.1007/s004460050039
Publisher site
See Article on Publisher Site

Abstract

 We present the first shared-memory algorithms for k-exclusion in which all process blocking is achieved through the use of “local-spin” busy waiting. Such algorithms are designed to reduce interconnect traffic, which is important for good performance. Our k-exclusion algorithms are starvation-free, and are designed to be fast in the absence of contention, and to exhibit scalable performance as contention rises. In contrast, all previous starvation-free k-exclusion algorithms require unrealistic operations or generate excessive interconnect traffic under contention. We also show that efficient, starvation-free k-exclusion algorithms can be used to reduce the time and space overhead associated with existing wait-free shared object implementations, while still providing some resilience to delays and failures. The resulting “hybrid” object implementations combine the advantages of local-spin spin locks, which perform well in the absence of process delays (caused, for example, by preemptions), and wait-free algorithms, which effectively tolerate such delays. We present performance results that confirm that this k-exclusion-based technique can improve the performance of existing wait-free shared object implementations. These results also show that lock-based implementations can be susceptible to severe performance degradation under multiprogramming, while our hybrid implementations are not.

Journal

Distributed ComputingSpringer Journals

Published: Dec 8, 1997

There are no references for this article.