Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Trace minmax functions and the radical Laguerre–Pólya class

Trace minmax functions and the radical Laguerre–Pólya class We classify functions f:(a,b)→R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f:(a,b)\rightarrow \mathbb {R}$$\end{document} which satisfy the inequality trf(A)+f(C)≥trf(B)+f(D)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\text {tr}}f(A)+f(C)\ge {\text {tr}}f(B)+f(D) \end{aligned}$$\end{document}when A≤B≤C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A\le B\le C$$\end{document} are self-adjoint matrices, D=A+C-B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D= A+C-B$$\end{document}, the so-called trace minmax functions. (Here A≤B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A\le B$$\end{document} if B-A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B-A$$\end{document} is positive semidefinite, and f is evaluated via the functional calculus.) A function is trace minmax if and only if its derivative analytically continues to a self-map of the upper half plane. The negative exponential of a trace minmax function g=e-f\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$g=e^{-f}$$\end{document} satisfies the inequality detg(A)detg(C)≤detg(B)detg(D)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \det g(A) \det g(C)\le \det g(B) \det g(D) \end{aligned}$$\end{document}for A, B, C, D as above. We call such functions determinant isoperimetric. We show that determinant isoperimetric functions are in the “radical” of the Laguerre–Pólya class. We derive an integral representation for such functions which is essentially a continuous version of the Hadamard factorization for functions in the Laguerre–Pólya class. We apply our results to give some equivalent formulations of the Riemann hypothesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research in the Mathematical Sciences Springer Journals

Trace minmax functions and the radical Laguerre–Pólya class

Research in the Mathematical Sciences , Volume 8 (1) – Jan 29, 2021

Loading next page...
 
/lp/springer-journals/trace-minmax-functions-and-the-radical-laguerre-p-lya-class-Adc80aJeFI

References (23)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
eISSN
2197-9847
DOI
10.1007/s40687-021-00248-5
Publisher site
See Article on Publisher Site

Abstract

We classify functions f:(a,b)→R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f:(a,b)\rightarrow \mathbb {R}$$\end{document} which satisfy the inequality trf(A)+f(C)≥trf(B)+f(D)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\text {tr}}f(A)+f(C)\ge {\text {tr}}f(B)+f(D) \end{aligned}$$\end{document}when A≤B≤C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A\le B\le C$$\end{document} are self-adjoint matrices, D=A+C-B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D= A+C-B$$\end{document}, the so-called trace minmax functions. (Here A≤B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A\le B$$\end{document} if B-A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B-A$$\end{document} is positive semidefinite, and f is evaluated via the functional calculus.) A function is trace minmax if and only if its derivative analytically continues to a self-map of the upper half plane. The negative exponential of a trace minmax function g=e-f\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$g=e^{-f}$$\end{document} satisfies the inequality detg(A)detg(C)≤detg(B)detg(D)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \det g(A) \det g(C)\le \det g(B) \det g(D) \end{aligned}$$\end{document}for A, B, C, D as above. We call such functions determinant isoperimetric. We show that determinant isoperimetric functions are in the “radical” of the Laguerre–Pólya class. We derive an integral representation for such functions which is essentially a continuous version of the Hadamard factorization for functions in the Laguerre–Pólya class. We apply our results to give some equivalent formulations of the Riemann hypothesis.

Journal

Research in the Mathematical SciencesSpringer Journals

Published: Jan 29, 2021

There are no references for this article.