Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Towards a learnt neural body schema for dexterous coordination of action in humanoid and industrial robots

Towards a learnt neural body schema for dexterous coordination of action in humanoid and... During any goal oriented behavior the dual processes of generation of dexterous actions and anticipation of the consequences of potential actions must seamlessly alternate. This article presents a unified neural framework for generation and forward simulation of goal directed actions and validates the architecture through diverse experiments on humanoid and industrial robots. The basic idea is that actions are consequences of an simulation process that animates the internal model of the body (namely the body schema), in the context of intended goals/constraints. Specific focus is on (a) Learning: how the internal model of the body can be acquired by any robotic embodiment and extended to coordinated tools; (b) Configurability: how diverse forward/inverse models of action can be ‘composed’ at runtime by coupling/decoupling different body (body $$+$$ + tool) chains with task relevant goals and constraints represented as multi-referential force fields; and (c) Computational simplicity: how both the synthesis of motor commands to coordinate highly redundant systems and the ensuing forward simulations are realized through well-posed computations without kinematic inversions. The performance of the neural architecture is demonstrated through a range of motor tasks on a 53-DoFs robot iCub and two industrial robots performing real world assembly with emphasis on dexterity, accuracy, speed, obstacle avoidance, multiple task-specific constraints, task-based configurability. Putting into context other ideas in motor control like the Equilibrium Point Hypothesis, Optimal Control, Active Inference and emerging studies from neuroscience, the relevance of the proposed framework is also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Towards a learnt neural body schema for dexterous coordination of action in humanoid and industrial robots

Loading next page...
 
/lp/springer-journals/towards-a-learnt-neural-body-schema-for-dexterous-coordination-of-3ROMaYgsiS

References (74)

Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-016-9563-3
Publisher site
See Article on Publisher Site

Abstract

During any goal oriented behavior the dual processes of generation of dexterous actions and anticipation of the consequences of potential actions must seamlessly alternate. This article presents a unified neural framework for generation and forward simulation of goal directed actions and validates the architecture through diverse experiments on humanoid and industrial robots. The basic idea is that actions are consequences of an simulation process that animates the internal model of the body (namely the body schema), in the context of intended goals/constraints. Specific focus is on (a) Learning: how the internal model of the body can be acquired by any robotic embodiment and extended to coordinated tools; (b) Configurability: how diverse forward/inverse models of action can be ‘composed’ at runtime by coupling/decoupling different body (body $$+$$ + tool) chains with task relevant goals and constraints represented as multi-referential force fields; and (c) Computational simplicity: how both the synthesis of motor commands to coordinate highly redundant systems and the ensuing forward simulations are realized through well-posed computations without kinematic inversions. The performance of the neural architecture is demonstrated through a range of motor tasks on a 53-DoFs robot iCub and two industrial robots performing real world assembly with emphasis on dexterity, accuracy, speed, obstacle avoidance, multiple task-specific constraints, task-based configurability. Putting into context other ideas in motor control like the Equilibrium Point Hypothesis, Optimal Control, Active Inference and emerging studies from neuroscience, the relevance of the proposed framework is also discussed.

Journal

Autonomous RobotsSpringer Journals

Published: Apr 4, 2016

There are no references for this article.