Access the full text.
Sign up today, get DeepDyve free for 14 days.
Social tagging is an increasingly popular way to describe and classify documents on the web. However, the quality of the tags varies considerably since the tags are authored freely. How to rate the tags becomes an important issue. Most social tagging systems order tags just according to the input sequence with little information about the importance and relevance. This limits the applications of tags such as information search, tag recommendation, and so on. In this paper, we pay attention to finding the authority score of tags in the whole tag space conditional on topics and put forward a topic-sensitive tag ranking (TSTR) approach to rank tags automatically according to their topic relevance. We first extract topics from folksonomy using a probabilistic model, and then construct a transition probability graph. Finally, we perform random walk over the topic level on the graph to get topic rank scores of tags. Experimental results show that the proposed tag ranking method is both effective and efficient. We also apply tag ranking into tag recommendation, which demonstrates that the proposed tag ranking approach really boosts the performances of social-tagging related applications.
Artificial Intelligence Review – Springer Journals
Published: Feb 9, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.