Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The stability of delamination growth in compressively loaded composite plates

The stability of delamination growth in compressively loaded composite plates The stability of growth of internal delaminations in composite plates subjected to compressive loading is investigated. Due to the compressive loading, these structures can undergo buckling of the delaminated layer and subsequently growth of the delamination. The study does not impose any restrictive assumptions regarding the delamination thickness and plate length (as opposed to the usual thin film assumptions). The growth characteristics of the delamination under monotonic compressive loading are obtained on the basis of a combined delamination buckling/postbuckling and fracture mechanics model. The postbuckling solution is derived through a perturbation procedure, which is based on an asymptotic expansion of the load and deformation quantities in terms of the distortion parameter of the delaminated layer, the latter being considered a compressive elastica. The closed form solutions for the energy release rate at the delamination tip versus applied compressive strain during the initial postbuckling phase are used to define the combinations of delamination length and applied strain that lead to unstable growth. This would practically cause either contained “jump” growth or complete (catastrophic) growth of the delamination. Estimates for the lower and upper bounds of the jump distance (unstable growth) are provided. Moreover, a study of the influence of the mode dependence of interface toughness on the conditions of initiation and extent of delamination growth is performed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Fracture Springer Journals

The stability of delamination growth in compressively loaded composite plates

Loading next page...
 
/lp/springer-journals/the-stability-of-delamination-growth-in-compressively-loaded-composite-9nI0ZF9RSt

References (18)

Publisher
Springer Journals
Copyright
Copyright
Subject
Materials Science; Characterization and Evaluation of Materials; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0376-9429
eISSN
1573-2673
DOI
10.1007/BF00035707
Publisher site
See Article on Publisher Site

Abstract

The stability of growth of internal delaminations in composite plates subjected to compressive loading is investigated. Due to the compressive loading, these structures can undergo buckling of the delaminated layer and subsequently growth of the delamination. The study does not impose any restrictive assumptions regarding the delamination thickness and plate length (as opposed to the usual thin film assumptions). The growth characteristics of the delamination under monotonic compressive loading are obtained on the basis of a combined delamination buckling/postbuckling and fracture mechanics model. The postbuckling solution is derived through a perturbation procedure, which is based on an asymptotic expansion of the load and deformation quantities in terms of the distortion parameter of the delaminated layer, the latter being considered a compressive elastica. The closed form solutions for the energy release rate at the delamination tip versus applied compressive strain during the initial postbuckling phase are used to define the combinations of delamination length and applied strain that lead to unstable growth. This would practically cause either contained “jump” growth or complete (catastrophic) growth of the delamination. Estimates for the lower and upper bounds of the jump distance (unstable growth) are provided. Moreover, a study of the influence of the mode dependence of interface toughness on the conditions of initiation and extent of delamination growth is performed.

Journal

International Journal of FractureSpringer Journals

Published: Apr 23, 2004

There are no references for this article.