Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Range of Hardy Numbers for Comb Domains

The Range of Hardy Numbers for Comb Domains Let D≠C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D\ne \mathbb {C}$$\end{document} be a simply connected domain and f be a Riemann mapping from D\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {D}$$\end{document} onto D. The Hardy number of D is the supremum of all p for which f belongs in the Hardy space HpD\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${H^p}\left( \mathbb {D} \right) $$\end{document}. A comb domain is a domain whose complement is the union of an infinite number of vertical rays symmetric with respect to the real axis. In this paper we prove that, for p>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p>0$$\end{document}, there is a comb domain with Hardy number equal to p if and only if p∈[1,+∞]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p\in [1,+\infty ]$$\end{document}. It is known that the Hardy number is related to the moments of the exit time of Brownian motion from the domain. In fact, Burkholder proved that the Hardy number of a simply connected domain is twice the supremum of all p>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p>0$$\end{document} for which the p-th moment of the exit time of Brownian motion is finite. Therefore, our result implies that given p<q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ p < q$$\end{document} there exists a comb domain with finite p-th moment but infinite q-th moment if and only if q≥1/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\ge 1/2$$\end{document}. This answers a question posed by Boudabra and Markowsky. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

The Range of Hardy Numbers for Comb Domains

Loading next page...
 
/lp/springer-journals/the-range-of-hardy-numbers-for-comb-domains-emFt4qitki
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/s40315-021-00426-0
Publisher site
See Article on Publisher Site

Abstract

Let D≠C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D\ne \mathbb {C}$$\end{document} be a simply connected domain and f be a Riemann mapping from D\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {D}$$\end{document} onto D. The Hardy number of D is the supremum of all p for which f belongs in the Hardy space HpD\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${H^p}\left( \mathbb {D} \right) $$\end{document}. A comb domain is a domain whose complement is the union of an infinite number of vertical rays symmetric with respect to the real axis. In this paper we prove that, for p>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p>0$$\end{document}, there is a comb domain with Hardy number equal to p if and only if p∈[1,+∞]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p\in [1,+\infty ]$$\end{document}. It is known that the Hardy number is related to the moments of the exit time of Brownian motion from the domain. In fact, Burkholder proved that the Hardy number of a simply connected domain is twice the supremum of all p>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p>0$$\end{document} for which the p-th moment of the exit time of Brownian motion is finite. Therefore, our result implies that given p<q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ p < q$$\end{document} there exists a comb domain with finite p-th moment but infinite q-th moment if and only if q≥1/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\ge 1/2$$\end{document}. This answers a question posed by Boudabra and Markowsky.

Journal

Computational Methods and Function TheorySpringer Journals

Published: Dec 1, 2022

Keywords: Hardy number; Hardy spaces; Comb domains; Exit time of Brownian motion; Primary 30H10; 42B30; Secondary 60J65

References