Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Logarithmic Derivative for Minimal Surfaces in ℝ3

The Logarithmic Derivative for Minimal Surfaces in ℝ3 E. F. Beckenbach and collaborators have developed a value distribution theory for minimal surfaces which parallels the work of R. Nevanlinna and others for complex meromorphic functions. We continue in the development by establishing the Lemma of the Logarithmic Derivative for minimal surfaces in ℝ3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

The Logarithmic Derivative for Minimal Surfaces in ℝ3

Loading next page...
 
/lp/springer-journals/the-logarithmic-derivative-for-minimal-surfaces-in-3-09dmcAXLNr
Publisher
Springer Journals
Copyright
Copyright © 2004 by Heldermann  Verlag
Subject
Mathematics; Analysis; Computational Mathematics and Numerical Analysis; Functions of a Complex Variable
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/BF03321056
Publisher site
See Article on Publisher Site

Abstract

E. F. Beckenbach and collaborators have developed a value distribution theory for minimal surfaces which parallels the work of R. Nevanlinna and others for complex meromorphic functions. We continue in the development by establishing the Lemma of the Logarithmic Derivative for minimal surfaces in ℝ3.

Journal

Computational Methods and Function TheorySpringer Journals

Published: Mar 7, 2013

References