Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Landau-Bloch type theorems for K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K-$$\end{document}quasiregular pluriharmonic mappings

The Landau-Bloch type theorems for K-\documentclass[12pt]{minimal} \usepackage{amsmath}... In this paper, we first establish two new versions of Landau-type theorems for higher dimensional holomorphic mappings with bounded derivative, from that, we obtain a Bloch-type theorem of Wu K-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K-$$\end{document}mappings, which improves the corresponding result of Chen and Gauthier. Next, we establish several new versions of Landau-type theorems for pluriharmonic mappings with bounded dilation. Finally, using these results, we derive four Bloch-type theorems of K-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K-$$\end{document}quasiregular pluriharmonic mappings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monatshefte für Mathematik Springer Journals

The Landau-Bloch type theorems for K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K-$$\end{document}quasiregular pluriharmonic mappings

Monatshefte für Mathematik , Volume 198 (1) – May 1, 2022

Loading next page...
 
/lp/springer-journals/the-landau-bloch-type-theorems-for-k-documentclass-12pt-minimal-xAPLo6O154
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
ISSN
0026-9255
eISSN
1436-5081
DOI
10.1007/s00605-021-01657-y
Publisher site
See Article on Publisher Site

Abstract

In this paper, we first establish two new versions of Landau-type theorems for higher dimensional holomorphic mappings with bounded derivative, from that, we obtain a Bloch-type theorem of Wu K-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K-$$\end{document}mappings, which improves the corresponding result of Chen and Gauthier. Next, we establish several new versions of Landau-type theorems for pluriharmonic mappings with bounded dilation. Finally, using these results, we derive four Bloch-type theorems of K-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K-$$\end{document}quasiregular pluriharmonic mappings.

Journal

Monatshefte für MathematikSpringer Journals

Published: May 1, 2022

Keywords: Holomorphic mapping; Pluriharmonic mappings; K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K-$$\end{document}quasiregular pluriharmonic mappings; Wu K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K-$$\end{document}mappings; Landau-type theorems; Bloch-type theorems; Bloch constants; Primary 31C10; Secondary 32A18; 31B05; 30C65

References