Access the full text.
Sign up today, get DeepDyve free for 14 days.
It is often assumed that the transition between chemical evolution and biological evolution undergoes a smooth process; that once life has arisen, it will automatically ‘flood’ a solar system body. However, there is no a priori reason to assume that a link between them is a given. The fact that both chemical evolution and biological evolution meet in a single point can be critical. Thus, one may ask: can a world’s environment be favourable for chemical evolution but not for biological evolution, or vice versa? This is an important question worth exploration because certain worlds in the solar system in the past seemed to possess the possibility of chemical evolution, while several worlds in the present seem to exhibit such a possibility. Have such solar system bodies thus been, or are, ‘flooded’ by life? Did they possess the opportunity for biological evolution? The answer depends on the very nature of certain conditions under which evolution occurs, which may indicate that a link between chemical evolution and biological evolution is not automatically realised on a habitable solar system body. Thus, these conditions imply that in the emergence and distribution of cellular life, there exists an indeterminacy bottleneck at which chemical evolution and biological evolution meet through a single cell, whose descendants goes ‘information explosive’, ‘entropy implosive’ and ‘habitat expansive’, which determine whether life moves on to new environments. The consequence is that a world's environment can indeed be favourable for biological evolution, but not for chemical evolution. Thus, even if chemical evolution leads to the emergence of a microbial organism in a world, then it is not a given that such a first life form will be subjected to distribution to other environments; and not a given that its existence will continue in the environment it originated in. Thus, the bottleneck may be one of the decisive factors in the differences between habitable and inhabited worlds.
Acta Biotheoretica – Springer Journals
Published: Mar 1, 2022
Keywords: Astrobiology; Chemical evolution; Biological evolution; Biophysics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.