Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The effects of UV irradiation exposure on the structure and properties of polypropylene/ZnO nanocamposite fibers

The effects of UV irradiation exposure on the structure and properties of polypropylene/ZnO... Abstract Unfilled polypropylene and polyropylene/ZnO nanocomposite fibers were produced using a melt spinning apparatus; then the fibers were exposed to UV irradiation. The structure and properties of the fibers were examined using scanning electron microscopy, tensile measurements, wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, birefringence measurements and differential scanning calorimetry (DSC). Following 150 hours of exposure to UV irradiation, some transverse cracks on the surface of unfilled polypropylene fibers were observed. It was observed that both carbonyl and hydroperoxide indexes, which are the criteria for the detection of UV degradation of the fibers, were increased due to the increase in the UV irradiation exposure time and the increase in these indexes was smaller for nanocomposite fibers than those of unfilled Polypropylene fibers. It was also observed that crystallinity, crystallite size and total molecular orientation of UV irradiated nanocomposite fibers were increased in comparison with non-irradiated nanocomposite fibers. It was also found that the extent of increase in molecular orientation of the fibers was higher comparing to that for the nanocomposite fibers due to the UV irradiation exposure for the unfilled polypropylene fibers. Tensile properties of both unfilled and nanocomposite fibers were decreased after UV irradiation; this reduction correlated with the extent of the increase in molecular degradation of the fibers, as determined by measuring carbonyl and hydroperoxide indexes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

The effects of UV irradiation exposure on the structure and properties of polypropylene/ZnO nanocamposite fibers

Fibers and Polymers , Volume 14 (10): 8 – Oct 1, 2013

Loading next page...
 
/lp/springer-journals/the-effects-of-uv-irradiation-exposure-on-the-structure-and-properties-UTJuVkzV4d

References (30)

Publisher
Springer Journals
Copyright
2013 The Korean Fiber Society and Springer Science+Business Media Dordrecht
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-013-1627-9
Publisher site
See Article on Publisher Site

Abstract

Abstract Unfilled polypropylene and polyropylene/ZnO nanocomposite fibers were produced using a melt spinning apparatus; then the fibers were exposed to UV irradiation. The structure and properties of the fibers were examined using scanning electron microscopy, tensile measurements, wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, birefringence measurements and differential scanning calorimetry (DSC). Following 150 hours of exposure to UV irradiation, some transverse cracks on the surface of unfilled polypropylene fibers were observed. It was observed that both carbonyl and hydroperoxide indexes, which are the criteria for the detection of UV degradation of the fibers, were increased due to the increase in the UV irradiation exposure time and the increase in these indexes was smaller for nanocomposite fibers than those of unfilled Polypropylene fibers. It was also observed that crystallinity, crystallite size and total molecular orientation of UV irradiated nanocomposite fibers were increased in comparison with non-irradiated nanocomposite fibers. It was also found that the extent of increase in molecular orientation of the fibers was higher comparing to that for the nanocomposite fibers due to the UV irradiation exposure for the unfilled polypropylene fibers. Tensile properties of both unfilled and nanocomposite fibers were decreased after UV irradiation; this reduction correlated with the extent of the increase in molecular degradation of the fibers, as determined by measuring carbonyl and hydroperoxide indexes.

Journal

Fibers and PolymersSpringer Journals

Published: Oct 1, 2013

Keywords: Polymer Sciences

There are no references for this article.