Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The ecological adaptability of Phragmites australis to interactive effects of water level and salt stress in the Yellow River Delta

The ecological adaptability of Phragmites australis to interactive effects of water level and... Soil salinity and waterlogging are two major environmental problems in estuarine wetlands. To prevent the typical wetland plants from degradation by soil salinization and salt waterlogging and more effectively use the plants to provide wetland ecosystem services, we examined the ecological adaptability of Phragmites australis, a characteristic plant species in the Yellow River Delta, to the interactive effects of water level and salt stress. The results showed that P. australis adapts to salt and water table stressed environments through slowing down the growth rate, maintaining the tiller number, and adjusting the biomass allocation of different organs. The highest plant height and the largest leaf area were at 0 cm water table treatment; the 0.5 % NaCl treatment increased the aboveground biomass; higher water table increased the fibrous root biomass allocation, but largely decreased the leaf biomass. The exclusion of toxic inorganic ions such as Na+ and Cl− and the accumulation of organic solutes are also important mechanisms to aid survival in saline wetlands. On average 35.1 % of Cl− and 53.9 % of Na+ accumulated in belowground organs. The study could provide fundamental guidance for wetland restoration projects and wetland sustainable use in coastal zones such as the Yellow River Delta. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aquatic Ecology Springer Journals

The ecological adaptability of Phragmites australis to interactive effects of water level and salt stress in the Yellow River Delta

Loading next page...
 
/lp/springer-journals/the-ecological-adaptability-of-phragmites-australis-to-interactive-q9KOGxcKm5

References (40)

Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Freshwater & Marine Ecology; Ecosystems
ISSN
1386-2588
eISSN
1573-5125
DOI
10.1007/s10452-016-9602-3
Publisher site
See Article on Publisher Site

Abstract

Soil salinity and waterlogging are two major environmental problems in estuarine wetlands. To prevent the typical wetland plants from degradation by soil salinization and salt waterlogging and more effectively use the plants to provide wetland ecosystem services, we examined the ecological adaptability of Phragmites australis, a characteristic plant species in the Yellow River Delta, to the interactive effects of water level and salt stress. The results showed that P. australis adapts to salt and water table stressed environments through slowing down the growth rate, maintaining the tiller number, and adjusting the biomass allocation of different organs. The highest plant height and the largest leaf area were at 0 cm water table treatment; the 0.5 % NaCl treatment increased the aboveground biomass; higher water table increased the fibrous root biomass allocation, but largely decreased the leaf biomass. The exclusion of toxic inorganic ions such as Na+ and Cl− and the accumulation of organic solutes are also important mechanisms to aid survival in saline wetlands. On average 35.1 % of Cl− and 53.9 % of Na+ accumulated in belowground organs. The study could provide fundamental guidance for wetland restoration projects and wetland sustainable use in coastal zones such as the Yellow River Delta.

Journal

Aquatic EcologySpringer Journals

Published: Sep 28, 2016

There are no references for this article.