Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The 1:±2 resonance

The 1:±2 resonance On the linear level elliptic equilibria of Hamiltonian systems are mere superpositions of harmonic oscillators. Non-linear terms can produce instability, if the ratio of frequencies is rational and the Hamiltonian is indefinite. In this paper we study the frequency ratio ±1/2 and its unfolding. In particular we show that for the indefinite case (1:−2) the frequency ratio map in a neighborhood of the origin has a critical point, i.e. the twist condition is violated for one torus on every energy surface near the energy of the equilibrium. In contrast, we show that the frequency map itself is non-degenerate (i.e. the Kolmogorov non-degeneracy condition holds) for every torus in a neighborhood of the equilibrium point. As a by product of our analysis of the frequency map we obtain another proof of fractional monodromy in the 1:−2 resonance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Regular and Chaotic Dynamics Springer Journals

Loading next page...
 
/lp/springer-journals/the-1-2-resonance-eBUkDUPzLS

References (42)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Mathematics; Dynamical Systems and Ergodic Theory
ISSN
1560-3547
eISSN
1468-4845
DOI
10.1134/S156035470706007X
Publisher site
See Article on Publisher Site

Abstract

On the linear level elliptic equilibria of Hamiltonian systems are mere superpositions of harmonic oscillators. Non-linear terms can produce instability, if the ratio of frequencies is rational and the Hamiltonian is indefinite. In this paper we study the frequency ratio ±1/2 and its unfolding. In particular we show that for the indefinite case (1:−2) the frequency ratio map in a neighborhood of the origin has a critical point, i.e. the twist condition is violated for one torus on every energy surface near the energy of the equilibrium. In contrast, we show that the frequency map itself is non-degenerate (i.e. the Kolmogorov non-degeneracy condition holds) for every torus in a neighborhood of the equilibrium point. As a by product of our analysis of the frequency map we obtain another proof of fractional monodromy in the 1:−2 resonance.

Journal

Regular and Chaotic DynamicsSpringer Journals

Published: Dec 18, 2007

There are no references for this article.