Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Testing of geroprotectors in experiments on cell cultures: Choosing the correct model system

Testing of geroprotectors in experiments on cell cultures: Choosing the correct model system We believe that cytogerontological models, such as the Hayflick model, though very useful for experimental gerontology, are based only on certain correlations and do not directly apply to the gist of the aging process. Thus, the Hayflick limit concept cannot explain why we age, whereas our “stationary phase aging” model appears to be a “gist model,” since it is based on the hypothesis that the main cause of both various “age-related” changes in stationary cell cultures and similar changes in the cells of aging multicellular organism is the restriction of cell proliferation. The model is applicable to experiments on a wide variety of cultured cells, including normal and transformed animal and human cells, plant cells, bacteria, yeasts, mycoplasmas, etc. The results of relevant studies show that cells in this model die out in accordance with the Gompertz law, which describes exponential increase of the death probability with time. Therefore, the “stationary phase aging” model may prove effective in testing of various geroprotectors (anti-aging factors) and geropromoters (pro-aging factors) in cytogerontological experiments. It should be emphasized, however, that even the results of such experiments do not always agree with the data obtained in vivo and therefore cannot be regarded as final but should be verified in studies on laboratory animals and in clinical trials (provided this complies with ethical principles of human subject research). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Moscow University Biological Sciences Bulletin Springer Journals

Testing of geroprotectors in experiments on cell cultures: Choosing the correct model system

Loading next page...
 
/lp/springer-journals/testing-of-geroprotectors-in-experiments-on-cell-cultures-choosing-the-2BM4UA5PjP

References (48)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Allerton Press, Inc.
Subject
Life Sciences; Biochemistry, general; Cell Biology; Life Sciences, general; Plant Sciences; Zoology
ISSN
0096-3925
eISSN
1934-791X
DOI
10.3103/S0096392514020035
Publisher site
See Article on Publisher Site

Abstract

We believe that cytogerontological models, such as the Hayflick model, though very useful for experimental gerontology, are based only on certain correlations and do not directly apply to the gist of the aging process. Thus, the Hayflick limit concept cannot explain why we age, whereas our “stationary phase aging” model appears to be a “gist model,” since it is based on the hypothesis that the main cause of both various “age-related” changes in stationary cell cultures and similar changes in the cells of aging multicellular organism is the restriction of cell proliferation. The model is applicable to experiments on a wide variety of cultured cells, including normal and transformed animal and human cells, plant cells, bacteria, yeasts, mycoplasmas, etc. The results of relevant studies show that cells in this model die out in accordance with the Gompertz law, which describes exponential increase of the death probability with time. Therefore, the “stationary phase aging” model may prove effective in testing of various geroprotectors (anti-aging factors) and geropromoters (pro-aging factors) in cytogerontological experiments. It should be emphasized, however, that even the results of such experiments do not always agree with the data obtained in vivo and therefore cannot be regarded as final but should be verified in studies on laboratory animals and in clinical trials (provided this complies with ethical principles of human subject research).

Journal

Moscow University Biological Sciences BulletinSpringer Journals

Published: Apr 5, 2014

There are no references for this article.