Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Task Modelling in Collective Robotics

Task Modelling in Collective Robotics Does coherent collective behaviour require an explicit mechanism of cooperation? In this paper, we demonstrate that a certain class of cooperative tasks, namely coordinated box manipulation, are possible without explicit communication or cooperation mechanisms. The approach relies on subtask decomposition and sensor preprocessing. A framework is proposed for modelling multi-robot tasks which are described as a series of steps with each step possibly consisting of substeps. Finite state automata theory is used to model steps with state transitions specified as binary sensing predicates called perceptual cues. A perceptual cue (Q), whose computation is disjoint from the operation of the automata, is processed by a 3-level finite state machine called a Q-machine. The model is based on entomological evidence that suggests local stimulus cues are used to regulate a linear series of building acts in nest construction. The approach is designed for a redundant set of homogeneous mobile robots, and described is an extension of a previous system of 5 box-pushing robots to 11 identical transport robots. Results are presented for a system of physical robots capable of moving a heavy object collectively to an arbitrarily specified goal position. The contribution is a simple task-programming paradigm for mobile multi-robot systems. It is argued that Q-machines and their perceptual cues offer a new approach to environment-specific task modelling in collective robotics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Task Modelling in Collective Robotics

Autonomous Robots , Volume 4 (1) – Oct 15, 2004

Loading next page...
 
/lp/springer-journals/task-modelling-in-collective-robotics-v9cB3Zt0wk

References (71)

Publisher
Springer Journals
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1023/A:1008859119831
Publisher site
See Article on Publisher Site

Abstract

Does coherent collective behaviour require an explicit mechanism of cooperation? In this paper, we demonstrate that a certain class of cooperative tasks, namely coordinated box manipulation, are possible without explicit communication or cooperation mechanisms. The approach relies on subtask decomposition and sensor preprocessing. A framework is proposed for modelling multi-robot tasks which are described as a series of steps with each step possibly consisting of substeps. Finite state automata theory is used to model steps with state transitions specified as binary sensing predicates called perceptual cues. A perceptual cue (Q), whose computation is disjoint from the operation of the automata, is processed by a 3-level finite state machine called a Q-machine. The model is based on entomological evidence that suggests local stimulus cues are used to regulate a linear series of building acts in nest construction. The approach is designed for a redundant set of homogeneous mobile robots, and described is an extension of a previous system of 5 box-pushing robots to 11 identical transport robots. Results are presented for a system of physical robots capable of moving a heavy object collectively to an arbitrarily specified goal position. The contribution is a simple task-programming paradigm for mobile multi-robot systems. It is argued that Q-machines and their perceptual cues offer a new approach to environment-specific task modelling in collective robotics.

Journal

Autonomous RobotsSpringer Journals

Published: Oct 15, 2004

There are no references for this article.