Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Synthesis and thermo-responsive properties of chitosan- g -poly ( N -isopropylacrylamide) and HTCC- g -poly( N -isopropylacrylamide) copolymers

Synthesis and thermo-responsive properties of chitosan- g -poly ( N -isopropylacrylamide) and... Abstract Carboxyl group-terminated poly(N-isopropylacrylamide) (PNIA-COOH) was synthesized via radical polymerization of N-isopropylacrylamide (NIA) using mercaptoacetic acid (MAA) as a chain transfer agent. The molecular weight of the PNIA-COOH was controlled by changing the molar ratio of MAA to NIA. A water-soluble chitosan derivative, N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), was also synthesized by reacting chitosan with glycidyltrimethylammonium chloride. Then, chitosan-g-PNIA and HTCC-g-PNIA copolymers were synthesized using the “graft-onto” method by reacting PNIA-COOH with chitosan and HTCC, respectively. The formation of the grafted copolymers was confirmed by Fourier transform infrared spectroscopy, solubility test in water, and scanning electron microscopy — energy dispersive spectroscopy. The thermo-responsive behaviors of the grafted copolymers and the change in lower critical solution temperature (LCST) were also studied. Chitosan-g-PNIA was insoluble in water and behaved like a thermo-responsive hydrogel due to the crosslinking-point action of the chitosan backbone. The swelling ratio of chitosan-g-PNIA increased with increasing PNIA content. HTCC-g-PNIA behaved as a water-soluble thermo-responsive polymer. Compared to the homo PNIA, the LCST of HTCC-g-PNIA was slightly increased. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Synthesis and thermo-responsive properties of chitosan- g -poly ( N -isopropylacrylamide) and HTCC- g -poly( N -isopropylacrylamide) copolymers

Fibers and Polymers , Volume 11 (2): 6 – Apr 1, 2010

Loading next page...
 
/lp/springer-journals/synthesis-and-thermo-responsive-properties-of-chitosan-g-poly-n-uo3JVknGYI

References (24)

Publisher
Springer Journals
Copyright
2010 The Korean Fiber Society and Springer Netherlands
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-010-0164-z
Publisher site
See Article on Publisher Site

Abstract

Abstract Carboxyl group-terminated poly(N-isopropylacrylamide) (PNIA-COOH) was synthesized via radical polymerization of N-isopropylacrylamide (NIA) using mercaptoacetic acid (MAA) as a chain transfer agent. The molecular weight of the PNIA-COOH was controlled by changing the molar ratio of MAA to NIA. A water-soluble chitosan derivative, N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), was also synthesized by reacting chitosan with glycidyltrimethylammonium chloride. Then, chitosan-g-PNIA and HTCC-g-PNIA copolymers were synthesized using the “graft-onto” method by reacting PNIA-COOH with chitosan and HTCC, respectively. The formation of the grafted copolymers was confirmed by Fourier transform infrared spectroscopy, solubility test in water, and scanning electron microscopy — energy dispersive spectroscopy. The thermo-responsive behaviors of the grafted copolymers and the change in lower critical solution temperature (LCST) were also studied. Chitosan-g-PNIA was insoluble in water and behaved like a thermo-responsive hydrogel due to the crosslinking-point action of the chitosan backbone. The swelling ratio of chitosan-g-PNIA increased with increasing PNIA content. HTCC-g-PNIA behaved as a water-soluble thermo-responsive polymer. Compared to the homo PNIA, the LCST of HTCC-g-PNIA was slightly increased.

Journal

Fibers and PolymersSpringer Journals

Published: Apr 1, 2010

Keywords: Polymer Sciences

There are no references for this article.