Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Synthesis and Structure Properties of Flame Retardant and Cationic Dyeable Polyamide 6 Modified with 5-sulfoisophthalic Acid Sodium and Melamine Cyanurate

Synthesis and Structure Properties of Flame Retardant and Cationic Dyeable Polyamide 6 Modified... Abstract Unmodified polyamide 6 commonly dyed with acid dyes, and has no flame-retarded properties. So they are flammable and can be easily stained by foods or drinks that contain acid dyes. However, the acid groups react with amino groups that existed at the end of PA6 chain while using cationic dyes. Thus, the acid dyes can be washed immediately. In this study, the flame retardant and cationic dyeable polyamide 6 (FRCD-PA6) modified with 5-sulfoisophthalic acid sodium (5-SSIPA) and melamine cyanurate (MCA) was successfully prepared by the two-step-melt polymerization method. Firstly, cationic dyeable polyamide 6 (CD-PA6) was prepared with sodium salt from 5-sulfoisphthalic acid. Secondly, melamine cyanurate, as an efficient flame retardant, was blended into the reaction. The chemical and crystalline structures of FRCDPA6 were characterized by the Fourier transform infrared spectroscopy (FT-IR) and wide angle X-ray diffraction (XRD). Their thermal properties were tested by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and morphology was analyzed by SEM, respectively. It had been measured to prove the dispersion of 5-SSIPA and MCA on polyamide 6 matrix. Incorporating with 5-SSIPA created more amorphous regions and rose up the dyeing rate easily, with a highest dyeing rate for about 96.79 %. The effect of varying MCA content on the composites showed more flame retardant and made better heat-resistance. Moreover, with the appropriate addition of MCA content, the limit oxygen index (LOI) reached up to 27, less smoking, no more black smoke, droplet phenomenon was slightly, and flame resistance had greatly improved. Because of the good synergy between 5-SSIPA and MCA, a kind of novel modified polyamide 6 which own both cationic dyeable and efficient flame retardant properties was born. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Synthesis and Structure Properties of Flame Retardant and Cationic Dyeable Polyamide 6 Modified with 5-sulfoisophthalic Acid Sodium and Melamine Cyanurate

Fibers and Polymers , Volume 19 (7): 10 – Jul 1, 2018

Loading next page...
 
/lp/springer-journals/synthesis-and-structure-properties-of-flame-retardant-and-cationic-lTqof7g3kJ

References (29)

Publisher
Springer Journals
Copyright
2018 The Korean Fiber Society and Springer Nature B.V.
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-018-7656-7
Publisher site
See Article on Publisher Site

Abstract

Abstract Unmodified polyamide 6 commonly dyed with acid dyes, and has no flame-retarded properties. So they are flammable and can be easily stained by foods or drinks that contain acid dyes. However, the acid groups react with amino groups that existed at the end of PA6 chain while using cationic dyes. Thus, the acid dyes can be washed immediately. In this study, the flame retardant and cationic dyeable polyamide 6 (FRCD-PA6) modified with 5-sulfoisophthalic acid sodium (5-SSIPA) and melamine cyanurate (MCA) was successfully prepared by the two-step-melt polymerization method. Firstly, cationic dyeable polyamide 6 (CD-PA6) was prepared with sodium salt from 5-sulfoisphthalic acid. Secondly, melamine cyanurate, as an efficient flame retardant, was blended into the reaction. The chemical and crystalline structures of FRCDPA6 were characterized by the Fourier transform infrared spectroscopy (FT-IR) and wide angle X-ray diffraction (XRD). Their thermal properties were tested by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and morphology was analyzed by SEM, respectively. It had been measured to prove the dispersion of 5-SSIPA and MCA on polyamide 6 matrix. Incorporating with 5-SSIPA created more amorphous regions and rose up the dyeing rate easily, with a highest dyeing rate for about 96.79 %. The effect of varying MCA content on the composites showed more flame retardant and made better heat-resistance. Moreover, with the appropriate addition of MCA content, the limit oxygen index (LOI) reached up to 27, less smoking, no more black smoke, droplet phenomenon was slightly, and flame resistance had greatly improved. Because of the good synergy between 5-SSIPA and MCA, a kind of novel modified polyamide 6 which own both cationic dyeable and efficient flame retardant properties was born.

Journal

Fibers and PolymersSpringer Journals

Published: Jul 1, 2018

Keywords: Polymer Sciences

There are no references for this article.