Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Synthesis and properties of Nylon 4/5 copolymers for hydrophilic fibers

Synthesis and properties of Nylon 4/5 copolymers for hydrophilic fibers Abstract Nylon 4, which can be synthesized by anionic ring-opening polymerization, has good mechanical properties and a very high affinity for water owing to its high polarity. On the other hand, despite its high melting temperature, the polymer has not been commercialized because of its low thermal stability. In this study, copolymerization of 2-pyrrolidone (C4) with 2-piperidone (C5) was performed to reduce the melting temperature of Nylon 4 homopolymer. The copolymerization reaction was controlled by changing the comonomer content, catalyst content, temperature, initiator content, and reaction time. The Nylon copolymers were characterized by 1H-nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The hydrophilic properties of Nylon 4 and its copolymers were evaluated by surface free energy analysis and moisture regain measurement. The intrinsic viscosity and polymerization yield of Nylon 4 increased with increasing catalyst concentration until 5 mole% and decreased with further increases in catalyst loading. The proton NMR spectrum revealed the composition of the Nylon 4/5 copolymer to be 62.5 % C4 moiety at a 5:5 comonomer feed ratio. The melting temperature of the Nylon 4/5 copolymers decreased considerably according to the composition. The moisture regain of the Nylon 4/5 copolymer was higher than 6.4 % even at 77.3 % C4 in composition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Synthesis and properties of Nylon 4/5 copolymers for hydrophilic fibers

Loading next page...
 
/lp/springer-journals/synthesis-and-properties-of-nylon-4-5-copolymers-for-hydrophilic-DTiL0mPYek

References (18)

Publisher
Springer Journals
Copyright
2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-014-1343-0
Publisher site
See Article on Publisher Site

Abstract

Abstract Nylon 4, which can be synthesized by anionic ring-opening polymerization, has good mechanical properties and a very high affinity for water owing to its high polarity. On the other hand, despite its high melting temperature, the polymer has not been commercialized because of its low thermal stability. In this study, copolymerization of 2-pyrrolidone (C4) with 2-piperidone (C5) was performed to reduce the melting temperature of Nylon 4 homopolymer. The copolymerization reaction was controlled by changing the comonomer content, catalyst content, temperature, initiator content, and reaction time. The Nylon copolymers were characterized by 1H-nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The hydrophilic properties of Nylon 4 and its copolymers were evaluated by surface free energy analysis and moisture regain measurement. The intrinsic viscosity and polymerization yield of Nylon 4 increased with increasing catalyst concentration until 5 mole% and decreased with further increases in catalyst loading. The proton NMR spectrum revealed the composition of the Nylon 4/5 copolymer to be 62.5 % C4 moiety at a 5:5 comonomer feed ratio. The melting temperature of the Nylon 4/5 copolymers decreased considerably according to the composition. The moisture regain of the Nylon 4/5 copolymer was higher than 6.4 % even at 77.3 % C4 in composition.

Journal

Fibers and PolymersSpringer Journals

Published: Jul 1, 2014

Keywords: Polymer Sciences

There are no references for this article.