Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Sweet whey cheese matrices inoculated with the probiotic strain Lactobacillus paracasei LAFTI® L26

Sweet whey cheese matrices inoculated with the probiotic strain Lactobacillus paracasei LAFTI® L26 Consumption of dairy products containing viable probiotic strains has increased dramatically in recent years, owing to general health claims associated therewith. This trend has boosted diversification of the portfolio of said products, including whey cheese matrices. However, taking into account the relatively poor organoleptic and textural features of these matrices, improvement is in order via incorporation of selected additives, provided that viability of the strains is duly assayed. Lactobacillus paracasei LAFTI® L26 was accordingly incorporated into whey protein solid matrices, in the presence of several additives aimed at enhancing their organoleptic appeal and textural performance. These matrices were produced from a combination of either ovine or bovine whey (or a mixture thereof) with ovine milk, and were inoculated at 10% (v/v) with the probiotic strain. Sugar, sugar and aloe vera, sugar and chocolate, and sugar and jam were further added, and the resulting products were then stored at 7 °C for 21 d. In general, viable cell numbers remained high in all experimental matrices throughout storage. Despite the observed low extents of breakdown, proteolytic activities by the end of storage were higher in matrices containing jam. Furthermore, L. paracasei partially converted lactose into lactic acid in these matrices. Additives enhanced the organoleptic features of whey cheeses, and produced different textural patterns. The higher sensory scores were attained by matrices containing sugar: sugar and aloe vera received the best scores by 3 d of storage, but these scores decreased as storage time elapsed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Dairy Science & Technology Springer Journals

Sweet whey cheese matrices inoculated with the probiotic strain Lactobacillus paracasei LAFTI® L26

Loading next page...
 
/lp/springer-journals/sweet-whey-cheese-matrices-inoculated-with-the-probiotic-strain-egosAVgAEr
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer S+B Media B.V.
Subject
Chemistry; Food Science; Agriculture; Microbiology
ISSN
1958-5586
eISSN
1958-5594
DOI
10.1051/dst:2008026
Publisher site
See Article on Publisher Site

Abstract

Consumption of dairy products containing viable probiotic strains has increased dramatically in recent years, owing to general health claims associated therewith. This trend has boosted diversification of the portfolio of said products, including whey cheese matrices. However, taking into account the relatively poor organoleptic and textural features of these matrices, improvement is in order via incorporation of selected additives, provided that viability of the strains is duly assayed. Lactobacillus paracasei LAFTI® L26 was accordingly incorporated into whey protein solid matrices, in the presence of several additives aimed at enhancing their organoleptic appeal and textural performance. These matrices were produced from a combination of either ovine or bovine whey (or a mixture thereof) with ovine milk, and were inoculated at 10% (v/v) with the probiotic strain. Sugar, sugar and aloe vera, sugar and chocolate, and sugar and jam were further added, and the resulting products were then stored at 7 °C for 21 d. In general, viable cell numbers remained high in all experimental matrices throughout storage. Despite the observed low extents of breakdown, proteolytic activities by the end of storage were higher in matrices containing jam. Furthermore, L. paracasei partially converted lactose into lactic acid in these matrices. Additives enhanced the organoleptic features of whey cheeses, and produced different textural patterns. The higher sensory scores were attained by matrices containing sugar: sugar and aloe vera received the best scores by 3 d of storage, but these scores decreased as storage time elapsed.

Journal

Dairy Science & TechnologySpringer Journals

Published: May 21, 2011

References