Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry

Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by... We present the synthesis, characterization, and electrode behavior of LiNi0.5Mn1.5O4 spinels prepared by the wet-chemical method via citrate precursors. The phase evolution was studied as a function of nickel substitution and upon intercalation and deintercalation of Li ions. Characterization methods include X-ray diffraction, SEM, Raman, Fourier transform infrared, superconducting quantum interference device, and electron spin resonance. The crystal chemistry of LiNi0.5Mn1.5O4 appears to be strongly dependent on the growth conditions. Both normal-like cubic spinel [Fd3m space group (SG)] and ordered spinel (P4 1 32 SG) structures have been formed using different synthesis routes. Raman scattering and infrared features indicate that the vibrational mode frequencies and relative intensities of the bands are sensitive to the covalency of the (Ni, Mn)-O bonds. Scanning electron microscopy (SEM) micrographs show that the particle size of the LiNi0.5Mn1.5O4 powders ranges in the submicronic domain with a narrow grain-size distribution. The substitution of the 3d8 metal for Mn in LiNi0.5Mn1.5O4 oxides is beneficial for its charge–discharge cycling performance. For a cut-off voltage of 3.5–4.9 V, the electrochemical capacity of the Li//LiNi0.5Mn1.5O4 cell is ca. 133 mAh/g during the first discharge. Differences and similarities between LiMn2O4 and LiNi0.5Mn1.5O4 oxides are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry

Ionics , Volume 12 (2) – Jun 10, 2006

Loading next page...
 
/lp/springer-journals/structure-and-insertion-properties-of-disordered-and-ordered-lini0-MhLq9YiyaT

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
DOI
10.1007/s11581-006-0021-7
Publisher site
See Article on Publisher Site

Abstract

We present the synthesis, characterization, and electrode behavior of LiNi0.5Mn1.5O4 spinels prepared by the wet-chemical method via citrate precursors. The phase evolution was studied as a function of nickel substitution and upon intercalation and deintercalation of Li ions. Characterization methods include X-ray diffraction, SEM, Raman, Fourier transform infrared, superconducting quantum interference device, and electron spin resonance. The crystal chemistry of LiNi0.5Mn1.5O4 appears to be strongly dependent on the growth conditions. Both normal-like cubic spinel [Fd3m space group (SG)] and ordered spinel (P4 1 32 SG) structures have been formed using different synthesis routes. Raman scattering and infrared features indicate that the vibrational mode frequencies and relative intensities of the bands are sensitive to the covalency of the (Ni, Mn)-O bonds. Scanning electron microscopy (SEM) micrographs show that the particle size of the LiNi0.5Mn1.5O4 powders ranges in the submicronic domain with a narrow grain-size distribution. The substitution of the 3d8 metal for Mn in LiNi0.5Mn1.5O4 oxides is beneficial for its charge–discharge cycling performance. For a cut-off voltage of 3.5–4.9 V, the electrochemical capacity of the Li//LiNi0.5Mn1.5O4 cell is ca. 133 mAh/g during the first discharge. Differences and similarities between LiMn2O4 and LiNi0.5Mn1.5O4 oxides are discussed.

Journal

IonicsSpringer Journals

Published: Jun 10, 2006

There are no references for this article.