Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Structural, magnetic and electrochemical studies on LiCo0.5Fe0.5O2

Structural, magnetic and electrochemical studies on LiCo0.5Fe0.5O2 LiCo0.5Fe0.5O2 was prepared by sol–gel method. The sample had spinel, cubic and hexagonal phases up to 873 K and a single hexagonal phase above 1,073 K. The magnetic properties were studied at room temperature and at 77 K. The large coercivities observed for the samples annealed at 1,073 and 1,273 K show that these samples do not exhibit a simple antiferromagnetic ordering. From the Mössbauer and magnetization measurements, it is concluded that the hexagonal phase is only an antiferromagnet. The above results clearly demonstrate that the simple aqueous-based sol–gel process developed in this work provides a viable method to synthesize the fine cuboidal particles that display discharge capacity as high as ≈165 mAh/g, which is higher than the value obtained by M. Holzapfel et al. (Holzapfel M, Schreiner R, Ott A, Electrochim Acta 46:1063, 2001) for their samples synthesized by using the ion exchange method. This work suggests that the approaches based on solution chemistry are viable processes for synthesizing good quality electrode material. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Structural, magnetic and electrochemical studies on LiCo0.5Fe0.5O2

Loading next page...
 
/lp/springer-journals/structural-magnetic-and-electrochemical-studies-on-lico0-5fe0-5o2-ow8RNj0piq

References (32)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
DOI
10.1007/s11581-006-0062-y
Publisher site
See Article on Publisher Site

Abstract

LiCo0.5Fe0.5O2 was prepared by sol–gel method. The sample had spinel, cubic and hexagonal phases up to 873 K and a single hexagonal phase above 1,073 K. The magnetic properties were studied at room temperature and at 77 K. The large coercivities observed for the samples annealed at 1,073 and 1,273 K show that these samples do not exhibit a simple antiferromagnetic ordering. From the Mössbauer and magnetization measurements, it is concluded that the hexagonal phase is only an antiferromagnet. The above results clearly demonstrate that the simple aqueous-based sol–gel process developed in this work provides a viable method to synthesize the fine cuboidal particles that display discharge capacity as high as ≈165 mAh/g, which is higher than the value obtained by M. Holzapfel et al. (Holzapfel M, Schreiner R, Ott A, Electrochim Acta 46:1063, 2001) for their samples synthesized by using the ion exchange method. This work suggests that the approaches based on solution chemistry are viable processes for synthesizing good quality electrode material.

Journal

IonicsSpringer Journals

Published: Jan 12, 2007

There are no references for this article.