Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Structural investigation of anionic functional poly(vinyl alcohol) doped polypyrrole nanospheres

Structural investigation of anionic functional poly(vinyl alcohol) doped polypyrrole nanospheres Abstract This article reports on a facile route for the preparation of polypyrrole nanospheres with improved water solubility, ordering and conductivity in the presence of a polyelectrolyte, such as phosphorylated polyvinyl alcohol. The phosphorylated polyvinyl alcohol (PPVA) was used as both the stabilizer and the dopant in the chemical oxidative polymerization of pyrrole. The resulting PPVA doped polypyrrole (PPy) nanocomposites (PPy-PPVA) were characterized with FTIR, TGA, SEM and AFM techniques. The electrical conductivity of polymer was measured by four-point probe method. Our observation and results suggest a plausible formation mechanism of PPy nanospheres, PPVA micelle might have functioned as ‘template’ during the polymerization of pyrrole monomers, meanwhile, the PPy chains doped with phosphate group. It was found that the size decreased and their dispersion stability in water increased with the increasing feeding ratio of PPVA. The conductivity of PPy with different morphologies was also measured and compared. When the PPVA: pyrrole feeding ratio ranged from 20 to 50 wt%, the PPy-PPVA nanoparticles showed spherical shape with excellent uniformity, good electrical conductivity (up to 33.1 S·cm−1), and weakly temperature dependent conductivity. It’s worth mentioning that the PPy-PPVA nanocomposite prepared in high PPVA feeding ratio has been well-dispersed for more than 24 months, which indicates its significant dispersion stability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Structural investigation of anionic functional poly(vinyl alcohol) doped polypyrrole nanospheres

Loading next page...
 
/lp/springer-journals/structural-investigation-of-anionic-functional-poly-vinyl-alcohol-WyNU8EZY1P

References (32)

Publisher
Springer Journals
Copyright
2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-014-2019-5
Publisher site
See Article on Publisher Site

Abstract

Abstract This article reports on a facile route for the preparation of polypyrrole nanospheres with improved water solubility, ordering and conductivity in the presence of a polyelectrolyte, such as phosphorylated polyvinyl alcohol. The phosphorylated polyvinyl alcohol (PPVA) was used as both the stabilizer and the dopant in the chemical oxidative polymerization of pyrrole. The resulting PPVA doped polypyrrole (PPy) nanocomposites (PPy-PPVA) were characterized with FTIR, TGA, SEM and AFM techniques. The electrical conductivity of polymer was measured by four-point probe method. Our observation and results suggest a plausible formation mechanism of PPy nanospheres, PPVA micelle might have functioned as ‘template’ during the polymerization of pyrrole monomers, meanwhile, the PPy chains doped with phosphate group. It was found that the size decreased and their dispersion stability in water increased with the increasing feeding ratio of PPVA. The conductivity of PPy with different morphologies was also measured and compared. When the PPVA: pyrrole feeding ratio ranged from 20 to 50 wt%, the PPy-PPVA nanoparticles showed spherical shape with excellent uniformity, good electrical conductivity (up to 33.1 S·cm−1), and weakly temperature dependent conductivity. It’s worth mentioning that the PPy-PPVA nanocomposite prepared in high PPVA feeding ratio has been well-dispersed for more than 24 months, which indicates its significant dispersion stability.

Journal

Fibers and PolymersSpringer Journals

Published: Oct 1, 2014

Keywords: Polymer Sciences

There are no references for this article.