Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Strength characterization of concrete using industrial waste as cement replacing materials for rigid pavement

Strength characterization of concrete using industrial waste as cement replacing materials for... The excessive use of cement in the construction industry has caused many undesirable consequences. Replacement of cement with industrial by-products like fly ash (FA), ground granulated blast furnace slag (GGBFS), silica fume (SF), metakaolin, rice husk ash, etc., as the mineral admixtures offers several advantages in this modern era of sustainability in construction practice. This paper presents the experimental investigations for assessing the strength properties of the concrete made using the pozzolanic waste materials, i.e. supplementary cementitious materials (SCMs) such as FA, GGBFS and SF as the cement replacing materials. Eight trial mixes were prepared using these materials with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. Moreover, superplasticizer was also used for bringing improvement in the workability. The compressive strengths corresponding to the curing period of 7, 28, 40 and 90 days along with the flexural and indirect tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study concludes that industrial waste materials can be used as partial replacement of cement and can render sustainable concrete for use in the rigid pavement construction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Innovative Infrastructure Solutions Springer Journals

Strength characterization of concrete using industrial waste as cement replacing materials for rigid pavement

Loading next page...
 
/lp/springer-journals/strength-characterization-of-concrete-using-industrial-waste-as-cement-W1lmh2tYo4
Publisher
Springer Journals
Copyright
Copyright © Springer Nature Switzerland AG 2020
ISSN
2364-4176
eISSN
2364-4184
DOI
10.1007/s41062-020-00328-5
Publisher site
See Article on Publisher Site

Abstract

The excessive use of cement in the construction industry has caused many undesirable consequences. Replacement of cement with industrial by-products like fly ash (FA), ground granulated blast furnace slag (GGBFS), silica fume (SF), metakaolin, rice husk ash, etc., as the mineral admixtures offers several advantages in this modern era of sustainability in construction practice. This paper presents the experimental investigations for assessing the strength properties of the concrete made using the pozzolanic waste materials, i.e. supplementary cementitious materials (SCMs) such as FA, GGBFS and SF as the cement replacing materials. Eight trial mixes were prepared using these materials with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. Moreover, superplasticizer was also used for bringing improvement in the workability. The compressive strengths corresponding to the curing period of 7, 28, 40 and 90 days along with the flexural and indirect tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study concludes that industrial waste materials can be used as partial replacement of cement and can render sustainable concrete for use in the rigid pavement construction.

Journal

Innovative Infrastructure SolutionsSpringer Journals

Published: Jul 3, 2020

There are no references for this article.